

Computational challenges in the analysis of high-throughput (epi)genomics sequencing data

Mattia Pelizzola - Center for Genomic Science of IIT@SEMM

- NGS technology
- NGS Computational workflows and data types
 - Sequencing reads: FASTQ
 - Reads alignments: SAM/BAM
 - Manipulating alignments and genomic intervals
- ChIP-seq background
- Peak calling
- Evaluating the quality of the results
- Visualizing the results on the genome browser
- Motif discovery

• NGS technology

- NGS Computational workflows and data types
 - Sequencing reads: FASTQ
 - Reads alignments: SAM/BAM
 - Manipulating alignments and genomic intervals
- ChIP-seq background
- Peak calling
- Evaluating the quality of the results
- Visualizing the results on the genome browser
- Motif discovery

	454 Ti RocheT	Illumina HiSeqTM 2000	ABI 5500 (SOLiD)
Amplification	Emulsion PCR	Bridge PCR	Emulsion PCR
Sequencing reaction	Pyrosequencing	Reversible terminators	Ligation-based sequencing
Paired ends/sep	Yes/3kb	Yes/200 bp	Yes/3 kb
Read length	400 bp	100 bp	75 bp
Advantages	Short run times. Longer reads improve mapping in repetitive regions. Ability to detect large structural variations	The most popular platform	Good base call accuracy. Good multiplexing capability
Disadvantages	High reagent cost. Higher error rates in repeat sequences		

Illumina sequencing

	GAIIx - V4 kits, v1.6 Pipeline	GAIIx - 95Gb Configuration	HiSeq2000
Average Clusters/ GAIIx tile	300,000	387,000	265,000
Data Rate (Gb/day)	5	7	31
Read Length	100bp	150bp	100bp
Error Rate	1.50%	1.40%	0.48%
Yield per run (Gb)	51	97.8	248

Each reaction produces a unique <u>library</u> of DNA fragments for sequencing.

Each NGS machine processes a single <u>flowcell</u> containing several independent <u>lanes</u> during a single sequencing run

- NGS technology
- NGS Computational workflows and data types
 - Sequencing reads: FASTQ
 - Reads alignments: SAM/BAM
 - Manipulating alignments and genomic intervals
- ChIP-seq background
- Peak calling
- Evaluating the quality of the results
- Visualizing the results on the genome browser
- Motif discovery

Single end vs paired end sequencing

- 1. Raw data analysis= image processing and base calling (reads)
- 2. Storing reads in FASTQ files
- 3. Quality controls
- 4. Reads filtering
- 5. Alignment to the reference genome
- 6. Storing aligned reads (alignments) in SAM/BAM files
- 7. Manipulating SAM/BAM files
- 8. Playing with alignments and genomic intervals

- NGS technology
- NGS Computational workflows and data types
 - Sequencing reads: FASTQ
 - Reads alignments: SAM/BAM
 - Manipulating alignments and genomic intervals
- ChIP-seq background
- Peak calling
- Evaluating the quality of the results
- Visualizing the results on the genome browser
- Motif discovery

FASTQ format is a text-based format for storing a biological sequence and its corresponding quality scores. It has become the standard for storing the output of high throughput sequencing instruments.

EXAMPLE:

@HWI-ST880:63:B01A6ACXX:1:1101:5627:25582 1:N:0:CTCGTA AAGAACGTCAGGGTTTCCTGCGCGTACACGCAAGGTAAACGCGAACAATTCAGCGGCTTTAACCGGACGCTCGACGCCATTAATAATGTTTTCCGTAAATT + @@@ADDDDFFD+<EGEFFCHF1@E8@D@BDFIAA?)=FEFIIFEC>BBB@AAA::@B8BBBABBB87;7@@BBBBBBB8<8>>@ADB@>:::<3:<:<&2>A @HWI-ST880:63:B01A6ACXX:1:1101:5519:25586 1:N:0:CTTGTA TTTGTTGTTTTACAGAACTCCACAGGAACAACTTCGTACCATGCTACCAAATACATTCACACATCCACATCAAGCTACTGCAGAGGCACAGTGCACTCAGA + CCCFFDFFHFFHHJGGIJIJGIIIGGIGIGIFIIJAGGHIJIIJICHIFBFHBHIIIGGGIJIFIJIJFEECHGDFFFFECCCBBBBDD>A:A@CCDAC

- 1. begins with a '@' character and is followed by a sequence identifier
- 2. the raw sequence letters.
- 3. begins with a '+' character and is *optionally* followed by the same sequence identifier
- 4. encodes the quality values for the sequence in and must contain the same number of symbols as letters in the sequence.

+

BBBBCCCC?<A?BC?7@@?????DBBA@@@@A@@

Sequences ID @EAS139:136:FC706VJ:2:5:1000:12850 1:Y:18:ATCACG means:

EAS139	the unique instrument name
136	the run id
FC706VJ	the flowcell id
2	flowcell lane
2104	tile number within the flowcell lane
15343	'x'-coordinate of the cluster within the tile
197393	'y'-coordinate of the cluster within the tile
1	the member of a pair, 1 or 2 (paired-end or mate-pair reads only)
Y	Y if the read fails filter (read is bad), N otherwise
18	0 when none of the control bits are on, otherwise it is an even number
ATCACG	index sequence

A FASTQ file contains quality information. Phred quality scores *Q* are defined as a property which is logarithmically related to the base-calling error probabilities *P* Where P is the probability that the corresponding base call is incorrect.

 $Q = -10 \log_{10} P$

So, if your p=0.1, the	(-10log ₁₀ (0.1))	
	=	(-10(-1)) = 10
If your p=0.01, then	Q _{value} =	(-10log ₁₀ (0.01))
	=	(-10(-2)) = 20
If p=0.001, then	Q _{value} =	(-10log ₁₀ (0.001))
	=	(-10(-3)) = 30

Phred quality scores *Q are* represented with a single bit in ASCII format. ASCII stands for American Standard Code for Information Interchange. ASCII code is the numerical representation of a character such as 'a' or '@' The first 32 symbols in ASCII are control characters, so we start at 33.

> !"#\$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopgrstuvwxyz{|}~ 33 59 64 73 104 126 S - Sanger Phred+33, raw reads typically (0, 40) X - Solexa Solexa+64, raw reads typically (-5, 40) I - Illumina 1.3+ Phred+64, raw reads typically (0, 40) J - Illumina 1.5+ Phred+64, raw reads typically (3, 40) with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold) (Note: See discussion above). L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)

If your ASCII character is 'B' and they are in Sanger format, then 66-33=33, so $33 = (-10\log_{10}p)$ -3.3= $\log_{10}p$ $10^{-3.3}=p$, so p= 0.0005 or 0.05% chance of an incorrect base.

- Before alignment there is sometimes the need to preprocess/manipulate the FASTA/FASTQ files to produce better mapping results. It is important to do quality control checks to understand whether your data has any problems of which you should be aware before doing any further analysis
- FastQC: quality control checks on raw sequence data coming from high throughput sequencing pipelines (http://www.bioinformatics.bbsrc.ac.uk/ projects/fastqc/).
- The FASTX-Toolkit tools perform some of these preprocessing tasks (<u>http://hannonlab.cshl.edu/fastx_toolkit/</u>).

Two of many useful tools are:

- FASTQ Quality Filter \rightarrow Filters sequences based on quality
- FASTQ Quality Trimmer \rightarrow Trims (cuts) sequences based on quality

Report

Summary

Basic Statistics

Measure	Value			
Filename	Raji.dmso.brd4.bam			
File type	Conventional base calls			
Encoding	Sanger / Illumina 1.9			
Total Sequences	61461639			
Sequence length	14-51			
%GC	39			

Per base sequence quality

Produced by FastQC (version 0.9.3)

Quality checks: FastqQC reports

30 32 34 36 38

Quality checks: FastqQC reports

- NGS technology
- NGS Computational workflows and data types
 - Sequencing reads: FASTQ
 - Reads alignments: SAM/BAM
 - Manipulating alignments and genomic intervals
- ChIP-seq background
- Peak calling
- Evaluating the quality of the results
- Visualizing the results on the genome browser
- Motif discovery

There are many aligners and many short reads aligners:

- Bfast
- BioScope
- Bowtie
- BWA
- CLC bio
- CloudBurst
- Eland/Eland2
- GenomeMapper
- GnuMap
- Karma

- MAQ
- MOM
- Mosaik
- MrFAST/MrsFAST
- NovoAlign
- PASS
- PerM
- RazerS
- RMAP
- SSAHA2

- Segemehl
- SeqMap
- SHRiMP
- Slider/SliderII
- SOAP/SOAP2
- Srprism
- Stampy
- vmatch
- ZOOM

•

- Mapping: quickly identify candidates of hits on the reference genome
- Alignment and report: score the alignment
- Important features:
 - Some software use the base quality score to evaluate alignment, others do not
 - For all the aligners there is a trade off between performance and accuracy
 - Gapped or ungapped alignment
 - Important parameters:
 - Maximum of mismatches
 - Reporting unique hits or multiple hits

•It uses Burrows-Wheeler indexing algorithm to speed up alignment time

- Fast and moderate memory usage
- Work for different sequencing platforms, for SE and PE
- Gapped alignment for both SE and PE reads
- Effective pairing to achieve high alignment accuracy; suboptimal hits considered in pairing.
- Non-unique read is placed randomly with a mapping quality 0.
- Reports ambiguous hits

References:

1.Li, H. and Durbin, R., Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics* 25 (14), 1754 (2009).
2.<u>http://bio-bwa.sourceforge.net/bwa.shtml</u>

The Sequence Alignment/Map (SAM) format:

- Format for the storage of sequence alignments and their mapping coordinates
- Supports different sequencing platforms
- Flexible in style, compact in size, computationally efficient to access

BAM is the binary version of the SAM format

Samtools is a set of tools for manipulating and controlling SAM/BAM files

Reads alignment output : SAM/BAM file formats

Tag Description:

@HD The header line.

@SQ Reference sequence dictionary. The order of @SQ lines defines the alignment sorting order.

LN Reference sequence length. Range: [1,229-1]

@RG Read group. Unordered multiple @RG lines are allowed.

ID Read group identifier. Each @RG line must have a unique ID. The value of ID is used in the RG tags of alignment records. Must be unique among all read groups in header section.

- CN Name of sequencing center producing the read.
- LB Library.
- PU Platform unit
- SM Sample. Use pool name where a pool is being sequenced.

Reads alignment output : SAM/BAM file formats

			Flag	
No.	Name	Description	0x0001	the r
1	QNAME	Query NAME of the read or the read pair	0x0002	the r pair
2	FLAG	Bitwise FLAG (pairing, strand, mate strand, etc.)	0x0004	the quinter the quinter the second se
3	RNAME	Reference sequence NAME	0x0008	the m
4	POS	1-Based leftmost POSition of clipped alignment	0x0010	stran
5	MAPQ	MAPping Quality (Phred-scaled)		rever
6	CIGAR	Extended CIGAR string (operations: MIDNSHP)	0x0020	stran
7	MRNM	Mate Reference NaMe ('=' if same as RNAME)	0x0040	the r
8	MPOS	1-Based leftmost Mate POSition		pair
9	ISIZE	Inferred Insert SIZE	0x0080	the ropair
10	SEQ	Query SEQuence on the same strand as the reference	0x0100	the a
11	QUAL	Query QUALity (ASCII-33=Phred base quality)	0x0200	QC fa
			0x0400	ontic

Flag	Description
FIAS	Description
0x0001	the read is paired in sequencing
0x0002	the read is mapped in a proper pair
0x0004	the query sequence itself is unmapped
0x0008	the mate is unmapped
0x0010	strand of the query (1 for reverse)
0x0020	strand of the mate
0x0040	the read is the first read in a pair
0x0080	the read is the second read in a pair
0x0100	the alignment is not primary
0x0200	QC failure
0x0400	optical or PCR duplicate

0100101001010

Bit 0 = The read was part of a pair during sequencing Bit 1 = The read is mapped in a pair Bit 2 = The query sequence is unmapped Bit 3 = The mate is unmapped Bit 4 = Strand of query (0=forward 1=reverse)

To find the value from the individual flags is additive. If the flag is false, don't add anything to the total. If it's true then add 2 raised to the power of the bit position.

For example:

Bit 0 - false - add nothing Bit 1 - true - add $2^{**1} = 2$ Bit 2 - false - add nothing Bit 3 - true - add $2^{**3} = 8$ Bit 4 - true - add $2^{**4} = 16$

Bit pattern = 11010 = 16+8+2 = 26So the flag value would be 26.

Other Examples: 0=0000000 99 = 01100011 147 = 10010011

0 = Not paired, mapped, forward strand.

99 = Paired, Proper Pair, Mapped, Mate Mapped, Forward, Mate Reverse, First in pair, Not second in pair 147 = Paired, Proper Pair, Mapped, Mate Mapped, Reverse, Mate Forward, Not first in pair, Second in pair

CIGAR string

- •M: match/mismatch
- •I: insertion
- •D: deletion
- •S: softclip
- •H: hardclip
- P: padding

Hard clipping

r003

r001

83 ref 37 30 9M

ullet

N: skip	coor ref	12345 AGCAT						0123456789012345 AGGCAGTCAGCGCCAT
Paired-end	r001+			ATAA <mark>AG</mark> GATA*(ATAA* <mark>G</mark> GATA	CTG			
	r002+		etaAGC					
	r004+	80	CUNC	ATAG	ст.			TCAGC
Multipart	r003-	ttaget TAGGC						
	r001-							CAGCGCCAT
	@SQ SN	l:ref L	N:45					
Ins & padding	r001 1	L63 ref	7 36	8M2I4M1D3N	1 =	37	39	TTAGATAAAGGATACTA *
Soft clipping	r002	0 ref	936) 3S6M1P1I4N	1 *	0	0	AAAAGATAAGGATA *
	r003	0 ref	936	9 <mark>5</mark> H6M	*	0	0	AGCTAA * NM:i:1
Splicing	r004	0 ref	16 30	0 6M <mark>14N</mark> 5M	*	0	0	ATAGCTTCAGC *

16 ref 29 30 6H5M 0 TAGGC * 0 7 - 39 CAGCGCCAT =

NM:i:0

*

*

- NGS technology
- NGS Computational workflows and data types
 - Sequencing reads: FASTQ
 - Reads alignments: SAM/BAM

• Manipulating alignments and genomic intervals

- ChIP-seq background
- Peak calling
- Evaluating the quality of the results
- Visualizing the results on the genome browser
- Motif discovery

- Library and software package that manipulate BAM/SAM files
- SAM→BAM conversion (samtools view)
- Samtools view –f INT file.bam
 Only output alignments with all bits in INT present in the FLAG field.
- Samtools view –F INT file.bam
 Skip alignments with bits present in INT [0]
- Creates sorted and indexed BAM files from SAM files (samtools sort /samtools index)
- Removing PCR duplicates (samtools rmdup)
- Merging alignments (samtools merge)
- Visualization of alignments from BAM files
- SNP calling and short indel detection

References:

- 1. <u>http://samtools.sourceforge.net/</u>
- 2.http://samtools.sourceforge.net/samtools.shtml

Utility Description

convert count	Converts between BAM and a number of other formats. Prints number of alignments in BAM file(s).
coverage	Prints coverage information from a BAM file.
filter	Filters BAM file(s) based on user-specified criteria.
header	Prints BAM header information.
index	Generates index for BAM file (either BAI or BTI).
merge	Merges multiple BAM files into single file.
sort	Sorts the BAM file.
split	Splits a BAM file into multiple files, based on some criteria.
stats	Prints general statistics from input BAM file(s).

Freely available at http://github.org/pezmaster31/bamtools

The BEDTools utilities allow one to address common genomics tasks such as finding feature overlaps and computing coverage. The utilities are largely based on four widely-used file formats: BED, GFF/GTF, VCF and SAM/BAM.

	chr1	3530750	3531792
	chr1	3555926	3556811
BED format	chr1	3763334	3764269
	chr1	3806144	3808253
	chr1	5974658	5975814
	-		

- **slopBed** Adjusts each BED entry by a requested number of base pairs.
- **shuffleBed**Randomly permutes the locations of a BED file among a genome.
- intersectBed (BAM) Returns overlaps between two BED/GFF/VCF files.
- **genomeCoverageBed (BAM)** Creates a "per base" report of genome coverage.
- **subtractBed** Removes the portion of an interval that is overlapped by another feature.
- mergeBed Merges overlapping features into a single feature.

References:

- 1 Quinlan AR and Hall IM, 2010. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 26, 6, pp. 841–842.
- 2 http://code.google.com/p/bedtools/downloads/detail?name=BEDTools-User-Manual.v4.pdf

- NGS technology
- NGS Computational workflows and data types
 - Sequencing reads: FASTQ
 - Reads alignments: SAM/BAM
 - Manipulating alignments and genomic intervals

• ChIP-seq background

- Peak calling
- Evaluating the quality of the results
- Visualizing the results on the genome browser
- Motif discovery

Layers of chromatin organization

Nature 454, 711-715 (Aug 2008)

Transcription factors (TFs)

Transcription factors (TFs)

Figure 3 Histone modifications. All histones are subject to post-transcriptional modifications, which mainly occur in histone tails. The main post-transcriptional modifications are depicted in this figure: acetylation (blue), methylation (red), phosphorylation (yellow) and ubiquitination (green). The number in gray under each amino acid represents its position in the sequence.

Histone modifications

Figure 4 | 'Dashboard' of histone modifications for fine-tuning genomic elements. In addition to enabling annotation, histone modifications may serve as 'dials' or 'switches' for cell type specificity. a | At promoters, they can contribute to fine-tuning of expression levels — from active to poised to inactive — and perhaps even intermediate levels. b | At gene bodies, they discriminate between active and inactive conformations. In addition, exons in active genes have higher nucleosome occupancy and thus more histone H3 lysine 36 trimethylation (H3K36me3) and H3K79me2-modified histones than introns. c | At distal sites, histone marks correlate with levels of enhancer activity. d | On a global scale, they may confer repression of varying stabilities and be associated with different genomic features. For example, lamina-associated domains (LADs) in the case of stable repression and Polycomb (Pc) bodies in the case of context-specific repression. DNAme, DNA methylation; LOCK, large organized chromatin K modification.

Epigenetic modifications in human diseases

Aberrant epigenetic mark	Alteration	Consequences	Examples of genes affected and/or resulting disease
Cancer			
DNA methylation	CpG island hypermethylation	Transcription repression	<i>MLH1</i> (colon, endometrium, stomach ¹¹), <i>BRCA1</i> (breast, ovary ¹¹), <i>MGMT</i> (several tumor types ¹¹), <i>p16^{INK4a}</i> (colon ¹¹)
	CpG island hypomethylation	Transcription activation	MASPIN (pancreas ⁹²), S100P (pancreas ⁹²) SNCG (breast and ovary ⁹²), MAGE (melanomas ⁹²)
	CpG island shore hypermethylation	Transcription repression	HOXA2 (colon ²⁰), GATA2 (colon ²⁰)
	Repetitive sequences hypomethylation	Transposition, recombination genomic instability	L1 (ref. 11), IAP ¹¹ , Sat2 (ref. 107)
Histone modification	Loss of H3 and H4 acetylation	Transcription repression	p21 ^{WAF1} (also known as CDKN1A) ¹¹
	Loss of H3K4me3	Transcription repression	HOX genes
	Loss of H4K20me3	Loss of heterochromatic structure	Sat2, D4Z4 (ref. 107)
	Gain of H3K9me and H3K27me3	Transcription repression	CDKN2A, RASSF1 (refs. 115-116)
Nucleosome positioning	Silencing and/or mutation of remodeler subunits	Diverse, leading to oncogenic transformation	BRG1, CHD5 (refs. 127-131)
	Aberrant recruitment of remodelers	Transcription repression	PLM-RARa ¹⁰³ recruits NuRD
	Histone variants replacement	Diverse (promotion cell cycle/destabilization of chromosomal boundaries)	H2A.Z overexpression/loss
Neurological disorders			
DNA methylation	CpG island hypermethylation	Transcription repression	Alzheimer's disease (NEP) ¹³⁵
	CpG island hypomethylation	Transcription activation	Multiple sclerosis (PADI2)135
	Repetitive sequences aberrant methylation	Transposition, recombination genomic instability	ATRX syndrome (subtelomeric repeats) ^{135,14}
Histone modification	Aberrant acetylation	Diverse	Parkinson's and Huntington's diseases ¹³⁵
	Aberrant methylation	Diverse	Huntington's disease and Friedreich's ataxia ¹³⁵
	Aberrant phosphorylation	Diverse	Alzheimer's disease ¹³⁵
Nucleosome positioning	Misposition in trinucleotide repeats	Creation of a 'closed' chromatin domain	Congenital myotonic dystrophy ¹⁵¹
Autoimmune diseases			
DNA methylation	CpG island hypermethylation	Transcription repression	Rheumatoid arthritis (DR3)154,155
	CpG island hypomethylation	Transcription activation	SLE (PRF1, CD70, CD154, AIM2)6
	Repetitive sequences aberrant methylation	Transposition, recombination genomic instability	ICF (<i>Sat2</i> , <i>Sat3</i>), rheumatoid arthritis (<i>L1</i>) ^{152,155}
Histone modification	Aberrant acetylation	Diverse	SLE (<i>CD154</i> , <i>IL10</i> , IFN-γ) ⁶
	Aberrant methylation	Diverse	Diabetes type 1 (CLTA4, IL6) ¹⁵⁹
	Aberrant phosphorylation	Diverse	SLE (NF-κB targets)
Nucleosome positioning	SNPs in the 17q12-q21 region	Allele-specific differences in nucleosome distribution	Diabetes type 1 (CLTA4, IL6)
	Histone variants replacement	Interferes with proper remodeling	Rheumatoid arthritis (histone variant macroH2A at NF- κ B targets) ¹⁵⁷

Identifying TFs or Histone modifications through ChIP-seq experiments

Identifying TFs or Histone modifications through ChIP-seq experiments

- NGS technology
- NGS Computational workflows and data types
 - Sequencing reads: FASTQ
 - Reads alignments: SAM/BAM
 - Manipulating alignments and genomic intervals
- ChIP-seq background
- Peak calling
- Evaluating the quality of the results
- Visualizing the results on the genome browser
- Motif discovery

Broad and sharp ChIP-seq signals

ChIP-seq peaks finding

ChIP-seq peaks finding

- NGS technology
- NGS Computational workflows and data types
 - Sequencing reads: FASTQ
 - Reads alignments: SAM/BAM
 - Manipulating alignments and genomic intervals
- ChIP-seq background
- Peak calling
- Evaluating the quality of the results
- Visualizing the results on the genome browser
- Motif discovery

False positives and negatives

False positives and negatives

Table 1 | Publicly available ChIP-seq software packages discussed in this review

	Profile	Peak criteriaª	Tag shift	Control data ^b	Rank by	FDR ^c	User input parameters ^d	Artifact filtering: strand-based/ duplicate ^e	Refs.
CisGenome v1.1	Strand-specific window scan	1: Number of reads in window 2: Number of ChIP reads minus control reads in window	Average for highest ranking peak pairs	Conditional binomial used to estimate FDR	Number of reads under peak	1: Negative binomial 2: conditional binomial	Target FDR, optional window width, window interval	Yes / Yes	10
ERANGE v3.1	Tag aggregation	1: Height cutoff Hiqh quality peak estimate, per- region estimate, or input	Hiqh quality peak estimate, per-region estimate, or input	Used to calculate fold enrichment and optionally <i>P</i> values	<i>P</i> value	1: None 2: <u># control</u> # ChIP	Optional peak height, ratio to background	Yes / No	4,18
FindPeaks v3.1.9.2	Aggregation of overlapped tags	Height threshold	Input or estimated	NA	reads under simulation		Minimum peak height, subpeak valley depth	Yes / Yes	19
F-Seq v1.82	Kernel density estimation (KDE)	s s.d. above KDE for 1: random background, 2: control	Input or estimated	KDE for local background	2: # control # ChIP height, backgroup Number of reads under simulation peak 1: Monte Carlo simulation 2: NA Minimu height, value, bandwip Peak height and fold enrichment 1: None 2: # control # ChIP Thresh value, bandwip Peak height and fold enrichment 2: # control # ChIP Target numbe cluster P value 1: None 2: # control # ChIP P-value tag len # ChIP q value 1: Poisson 2: From binomial for sample plus control Target yalue q value 1: NA 2: # control KDE ba		Threshold s.d. value, KDE bandwidth	No / No	14
GLITR	Aggregation of overlapped tags	Classification by height and relative enrichment	User input tag extension	Multiply sampled to estimate background class values	and fold		Target FDR, number nearest neighbors for clustering	No / No	17
MACS v1.3.5	Tags shifted then window scan	Local region Poisson <i>P</i> value	Estimate from high quality peak pairs	Used for Poisson fit when available	P value	2: # control	P-value threshold, tag length, mfold for shift estimate	No / Yes	13
PeakSeq	Extended tag aggregation	Local region binomial <i>P</i> value	Input tag extension length	tag Used for sion significance of		background assumption 2: From binomial for sample plus	background assumption 2: From binomial for sample plus		5
QuEST v2.3	Kernel density estimation	2: Height threshold, background ratio	Mode of local KDE for shifts that enrichment and maximize empirical FDR strand cross- correlation		<i>q</i> value	2: # control # ChIP as a function of	# control peak height, # ChIP subpeak valley		9
SICER v1.02	Window scan with gaps allowed	P value from random background model, enrichment relative to control	Input	Linearly rescaled for candidate peak rejection and <i>P</i> values	<i>q</i> value	1: None 2: From Poisson <i>P</i> values	Window length, gap size, FDR (with control) or <i>E</i> -value (no control)	No / Yes	15
SiSSRs v1.4	Window scan	$N_{+} - N_{-}$ sign change, $N_{+} + N_{-}$ threshold in region ^f	Average nearest paired tag distance	Used to compute fold-enrichment distribution	P value	1: Poisson 2: control distribution	1: FDR 1,2: N ₊ + N_ threshold	Yes / Yes	11
spp v1.0	Strand specific window scan	Poisson P value (paired peaks only)	Maximal strand cross- correlation	Subtracted before peak calling	P value	1: Monte Carlo simulation 2: <u># control</u> # ChIP	Ratio to background	Yes / No	12
USeq v4.2	Window scan	Binomial <i>P</i> value	Estimated or user specified	Subtracted before peak calling	q value	1, 2: binomial 2: <u># control</u> <u># ChIP</u>	Target FDR	No / Yes	20

Number of peaks

Number of peaks

Peaks overlap

NRSF	Cie	Senome Sol	e-Search		ANCH DE	at Sea Ho	2014 OL	EST white	> mit		SRS NAC
CisGenome	Х	80	76	64	44	40	36	37	33	31	19
Sole-Search	82	X	81	68	45	40	36	38	34	37	19
MCPF	91	95	X	81	53	48	42	47	41	48	22
ERANGE	91	93	94	Х	61	54	47	52	46	49	26
PeakSeq	98	99	100	100	Х	85	66	78	69	78	43
Hpeak	98	99	100	100	91	Х	69	83	74	80	43
QuEST	91	92	91	89	76	74	Х	74	68	76	44
spp wtd	98	99	99	97	87	85	72	Х	84	76	45
spp mtc		98	99	96	87	86	75	94	Х	77	47
SISSRS	97	98	100	99	89	86	75	88	79	Х	46
MACS	100	99	100	100	97	94	87	93	88	93	Х

Wilbanks et al, Plos ONE 2010

- NGS technology
- NGS Computational workflows and data types
 - Sequencing reads: FASTQ
 - Reads alignments: SAM/BAM
 - Manipulating alignments and genomic intervals
- ChIP-seq background
- Peak calling
- Evaluating the quality of the results
- Visualizing the results on the genome browser
- Motif discovery

Broad and sharp ChIP-seq signals

Broad and sharp ChIP-seq signals

- NGS technology
- NGS Computational workflows and data types
 - Sequencing reads: FASTQ
 - Reads alignments: SAM/BAM
 - Manipulating alignments and genomic intervals
- ChIP-seq background
- Peak calling
- Evaluating the quality of the results
- Visualizing the results on the genome browser
- Motif discovery

TF matching a specific DNA motif

