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GMQL - Biological examples 
 
 
This section of GMQL documentation collects several examples where GMQL is used to answer 
practical questions/tasks of biological and clinical interest. For each example, after an initial textual 
statement describing the question/task to be answered, the GMQL query that answers it is reported 
together with a detailed commented description of the query and its results. 
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1. Find distal bindings in transcription regulatory regions 
“Find all enriched regions (peaks) of CTCF transcription factor (TF) in ENCODE ChIP-seq narrow 
peak samples from GM12878 lymphoblastoid human cell line which are the nearest regions farther 
than 100 kb from a transcription start site (TSS). For the same cell line, find also all peaks of the 
H3K4me1 histone modification (HM) which are also the nearest regions farther than 100 kb from a 
TSS. Then, out of the TF and HM peaks found in the same cell line, return all TF peaks that overlap 
with at least a HM peak and known enhancer (EN) region.” 
  
TF = SELECT(assay == "ChIP-seq" AND output_type == "peaks" AND  

experiment_target == "CTCF-human" AND  
biosample_term_name == "GM12878") HG19_ENCODE_NARROW_NOV_2017; 

HM = SELECT(assay == "ChIP-seq" AND output_type == "peaks" AND  
experiment_target == "H3K4me1-human" AND  
biosample_term_name == "GM12878") HG19_ENCODE_NARROW_NOV_2017; 

TSS = SELECT(annotation_type == "TSS" AND provider == "UCSC") HG19_BED_ANNOTATION; 
EN = SELECT(annotation_type == "enhancer" AND provider == "UCSC") 

HG19_BED_ANNOTATION; 
 

TF1 = JOIN(DISTANCE > 100000, MINDISTANCE(1); output: RIGHT_DISTINCT) TSS TF; 
HM1 = JOIN(DISTANCE > 100000, MINDISTANCE(1); output: RIGHT_DISTINCT) TSS HM; 
HM2 = JOIN(DISTANCE < 0; output: INT) EN HM1; 
HM3 = MERGE() HM2; 
TF_RES = JOIN(DISTANCE < 0; output: RIGHT_DISTINCT) HM3 TF1; 

 
MATERIALIZE TF_RES INTO TF_RES; 
 
This example, whose context is illustrated in Figure 1, shows that GMQL is a powerful expressive 
language to answer frontier epigenomics questions on entire genomic datasets. Out of all 10,342 
ENCODE ChIP-seq narrow peak samples available on November 2017 (containing a total of 
1,604,183,681 enriched regions), initially the GMQL query selects 2,136,849 TF regions from 10 
samples and 328,949 HM regions from 3 samples, in both cases of the GM12878 lymphoblastoid 
human cell line. It also selects 131,780 TSSs and 1,339 enhancer regions from the 
HG19_BED_ANNOTATION dataset, which are provided by the UCSC database 
(https://genome.ucsc.edu/cgi-bin/hgTables) from SwitchGear Genomics 
(http://switchgeargenomics.com/) and Vista Enhancer (http://enhancer.lbl.gov/), respectively.  

 
Figure 1. The histone modification (HM) and transcription factor (TF) binding site enriched regions 

(‘peaks’), known reference DNA regions and their distance relationships involved in Example 1. 

https://genome.ucsc.edu/cgi-bin/hgTables
http://switchgeargenomics.com/
http://enhancer.lbl.gov/


3 
 

  
Then, for each sample, the GMQL query computes in TF1 the TF regions that are at minimal distance 
from a TSS, provided that such distance is greater than 100,000 bases, and in HM1 the HM regions 
that also are at minimal distance from a TSS, with the same constraint. Note that, in addition to the 
distal condition, the JOIN parameter also indicates that the result must include only the distinct 
matching regions of the right sample, TF and HM respectively.  
 
Next, in HM2 for each sample the query computes the intersection between those HM1 enriched 
regions and the enhancer regions in EN. Then, it merges in a single sample in HM3 all regions in all 
HM2 samples. Finally, it computes in TF_res the enriched regions in each TF1 sample that intersect 
with at least a region in HM3, producing in the result the matching regions of the right TF1 sample. 
 
At the time of writing, the query extracted 10 TF samples containing a total of 49 enriched binding 
regions. Its execution required only 238 seconds, a short time considering the complexity of the task 
and the multiple implicit iterations on the many samples and regions initially considered.  
 
The join operation with distance and mindistance functions highlights the power of GMQL in 
performing genometric evaluations in batch on multiple samples at a time; they are normally 
performed by executing data manipulation scripts, developed by individual researchers in different 
programming languages. 
 

2. Find exons with somatic mutations  
“Consider all public somatic mutation data samples of TCGA Kidney Renal Clear Cell Carcinoma 
patients. For each sample, count the mutations occurring in each exon and select the exons with at 
least one mutation. Return such samples together with the number of such exons and the maximum 
number of mutations in a single exon.” 
 
MUT = SELECT(manually_curated__cases__disease_type == " Kidney Renal Clear Cell  

Carcinoma") GRCh38_TCGA_somatic_mutation_masked; 
EXON = SELECT(annotation_type == "exon" AND release_version == "22") 

GRCh38_ANNOTATION_GENCODE; 
 
EXON1 = MAP() EXON MUT; 
EXON2 = SELECT(region: count_EXON_MUT >= 1) EXON1; 
EXON_RES = EXTEND(exon_count AS COUNT(),  

max_mut AS MAX(count_EXON_MUT)) EXON2; 
MATERIALIZE EXON_RES INTO EXON_RES; 
 
This example shows that GMQL is very effective at counting (in batch and on multiple samples) 
genomic elements, in this case mutations, that are mapped upon known genomic regions (in this 
case all exons), extracting regions having more mutations than a given threshold and then counting 
the number of such regions in each sample and the maximum number of mutations in such regions 
of each sample. Known human protein-coding and non-protein-coding exon regions of the 
GENCODE annotation release 22, originally provided by 
(https://www.gencodegenes.org/releases/22.html), are selected from the 
GRCh38_ANNOTATION_GENCODE dataset. Count of data sample items is performed by the MAP 

https://www.gencodegenes.org/releases/22.html
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and EXTEND operations. MAP counts mutations in each sample within each exon while mapping 
the mutations to the exon regions; SELECT removes those exons in each sample that do not contain 
mutations; EXTEND counts how many exons remain in each sample and evaluates the maximum 
number of mutations in an exon, storing the result in the sample metadata as a new attribute–value 
pair.  
 
Note that, also in this example, the query is applied in batch on multiple data samples, i.e., all those 
samples selected from the GRCh38_TCGA_somatic_mutation_masked collection, which can be 
very numerous (in the case of the publicly available TCGA data, at the time of writing all the available 
samples were 10,188 for a total of 10,903,607 somatic mutations). At the time of writing, by applying 
this GMQL query to the 336 somatic mutation samples publicly available in TCGA from kidney renal 
cell carcinoma patients, containing a total of 79,321 somatic mutations, and considering all 1,172,082 
exon regions of 60,483 human protein-coding and non-protein-coding genes provided by GENCODE 
annotation release 22, it extracted 336 patient samples with somatic mutations involving 54,399 
distinct exons. The execution of the query required only 2 hours and 19 minutes, a quite limited time 
considering the amount of data it applies on. 
  

3. Find top ChIP-seq samples with highest number of enriched 
regions in promoters  

 
“In each ENCODE narrow peak ChIP-seq sample of high quality of the K562 chronic myelogenous 
leukemia cell line, select ChIP-seq enriched regions that intersect at least a gene promoter and 
extract the top 3 samples with the highest number of such enriched regions.” 
  
HM_TF = SELECT(assay == "ChIP-seq" AND output_type == "conservative idr thresholded peaks" 

AND biosample_term_name == "K562") HG19_ENCODE_NARROW_NOV_2017; 
TRANSC = SELECT(annotation_type == "transcript" AND release_version == "19") 

HG19_ANNOTATION_GENCODE; 
PROM = PROJECT(region_update: start AS start - 2000, stop AS start + 1000) TRANSC; 
 
HM_TF_PROM = JOIN(DISTANCE < 0; output: LEFT_DISTINCT) HM_TF PROM; 
HM_TF_PROM1 = EXTEND(region_count AS COUNT()) HM_TF_PROM; 
RES = ORDER(region_count DESC; meta_top: 3) HM_TF_PROM1; 
MATERIALIZE RES INTO RES; 
 
This example uses a JOIN operation to extract the enriched regions in each ENCODE ChIP-seq 
narrow peak sample that intersect with at least a gene promoter (i.e., proximal regulatory region). 
Then, using an EXTEND operation it counts the number of such regions in each sample. Finally, 
using an ORDER operation it extracts the top 3 samples with the highest number of such regions. 
 
Out of all 10,342 ENCODE ChIP-seq narrow peak samples available on November 2017 (containing 
a total of 1,604,183,681 enriched regions), initially the GMQL query selected 328 high quality 
(conservative idr thresholded peaks) ChIP-seq samples of the K562 chronic myelogenous leukemia 
cell line, including a total of 4,423,009 peaks.  It also selected 196,520 gene transcription regions of 
the GENCODE annotation release 19 from the HG19_ANNOTATION_GENCODE dataset, originally 
provided by (https://www.gencodegenes.org/releases/19.html), around whose first bases it defines 

https://www.gencodegenes.org/releases/19.html
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(using the typical -2k/+1k bp interval) the gene promoter regions to be considered. Next, a total of 
1,925,928 ChIP-seq sample peaks intersecting with promoters were extracted and counted, and the 
3 samples with more of such peaks were selected, having a total of 84,011 peaks. Processing 
required 16 minutes and 8 seconds. 
 
The RES result dataset includes both regions and metadata; the former ones indicate interesting 
ChIP-seq enriched regions (that can be further inspected using, e.g., genome browsers), the latter 
ones allow tracing provenance of resulting samples and ease the biomedical interpretation of the 
results, facilitating also result sample stratification and further evaluations. Table 1 shows 4 metadata 
attributes of the 3 resulting samples: the order of the sample, the experiment target, the biosample 
term name (i.e., cell type) considered in the ChIP-seq experiment, and the count of enriched regions 
in the sample. 
 

Table 1. Metadata excerpt of the resulting samples. 
ID Attribute Value 
1 _order 1 
1 biosample_term_name K562 
1 experiment_target RBFOX2-human 
1 region_count 36753 
2 _order 2 
2 biosample_term_name K562 
2 experiment_target eGFP-VEZF1-human 
2 region_count 24219 
3 _order 3 
3 biosample_term_name K562 
3 experiment_target L3MBTL2-human 
3 region_count 23039 

 

4. Find promoters with highest number of ChIP-seq enriched 
regions  

 
“After combining high quality narrow peak ChIP-seq sample replicates for each experiment target of 
the K562 chronic myelogenous leukemia cell line available in ENCODE and calculating the average 
enrichment (signal) for each obtained enriched region of each experiment target, extract the gene 
promoters with more than 50 experiment target enriched regions.” 
  
HM_TF = SELECT(assay == "ChIP-seq" AND output_type == "conservative idr thresholded peaks" 

AND biosample_term_name == "K562") HG19_ENCODE_NARROW_NOV_2017; 
TRANSC = SELECT(annotation_type == "transcript" AND release_version == "19") 

HG19_ANNOTATION_GENCODE; 
PROM = PROJECT(region_update: start AS start - 2000, stop AS start + 1000) TRANSC; 
 
HM_TF1 = COVER(1, ANY; groupby: experiment_target;  

aggregate: AVG_signal AS AVG(signal)) HM_TF; 
HM_TF2 = MERGE() HM_TF1; 
PROM_HM_TF = MAP(count_name: region_count) PROM HM_TF2; 
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RES = SELECT(region: region_count > 50) PROM_HM_TF; 
MATERIALIZE RES INTO RES; 
 
This example uses a COVER operation to combine multiple ENCODE ChIP-seq sample replicates, 
a MERGE operation to collapse all enriched binding regions of such combined replicate samples in 
a single sample, and a MAP operation to map such regions on each gene promoter region and count 
how many of them intersect each promoter (i.e., proximal regulatory region). Finally, it selects the 
promoters that overlaps more than 50 enriched binding regions. 
 
Out of all 10,342 ENCODE ChIP-seq narrow peak samples available on November 2017 (containing 
a total of 1,604,183,681 enriched regions), initially the GMQL query selected 328 high quality 
(conservative idr thresholded peaks) ChIP-seq samples of the K562 chronic myelogenous leukemia 
cell line, including a total of 4,423,009 peaks. It also selected 196,520 gene transcription regions of 
the GENCODE annotation release 19 from the HG19_ANNOTATION_GENCODE dataset, originally 
provided by (https://www.gencodegenes.org/releases/19.html), around whose first bases it defines 
(using the typical -2k/+1k bp interval) the gene promoter regions to be considered. Next, ChIP-seq 
replicate samples of the same experiment target are combined in a single sample, where every set 
of originally overlapping or contiguous peaks is combined in a single region representing all genomic 
bases covered by the original peaks in the set, and the average signal of all combined peaks in the 
set is calculated and associated with the new single region. In this way, a total of 259 samples and 
3,359,704 regions was obtained. Then, all such regions in all combined ChIP-seq samples are 
merged in a single sample (where they remain distinct from each other) and are mapped to all 
considered promoters while counting how many of such regions overlap each promoter. Finally, only 
61,245 promoters overlapping more than 50 of such regions are selected and stored. At the time of 
writing, processing required 4 minutes and 3 seconds. 
 

5. Combining ChIP-seq and DNase-seq data in different formats 
and sources 

 
“From ENCODE ChIP-seq experiment samples extract narrow peaks of enriched binding sites that 
intersect DNase-seq hotspot broad open chromatin regions with a false discovery rate (fdr) threshold 
of at least 0.01 from Roadmap Epigenomics in normal H1 embryonic stem cells.” 
  
CHIPSEQ = SELECT(assay == "ChIP-seq" AND output_type == "peaks" AND 

biosample_term_name == "H1-hESC") HG19_ENCODE_NARROW_NOV_2017; 
DNASESEQ = SELECT(manually_curated__data_type == "DNase-seq" AND 

manually_curated__peak_caller == "HOTSPOT" AND manually_curated__region_type == 
"broad" AND manually_curated__fdr_threshold == "0.01" AND 
epi__standardized_epigenome_name == "H1 Cells")  
HG19_ROADMAP_EPIGENOMICS_BED; 

CHIPSEQ_IN_DNASESEQ = JOIN(DISTANCE < 0; output: RIGHT_DISTINCT) DNASESEQ 
CHIPSEQ; 

MATERIALIZE CHIPSEQ_IN_DNASESEQ INTO CHIPSEQ_IN_DNASESEQ; 
 

https://www.gencodegenes.org/releases/19.html
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Combining data in different formats and from different sources, this example shows how to improve 
the quality of ChiP-seq called peaks by filtering out those peaks that are not in open chromatin 
regions, where they should be to reflect biological constraints. For the embryonic stem cell H1-hESC 
cell line, all ChIP-seq narrow peak samples available from the ENCODE data collection on November 
2017 and DNase-seq open chromatin region samples from the Roadmap Epigenomics Project are 
selected. Since the HG19_ROADMAP_EPIGENOMICS_BED contains a single consensus 
(consolidated) sample for each epigenome, there is no need to use a COVER operation to combine 
multiple DNase-seq replicate samples into a single sample, which includes all identified open 
chromatin regions. A JOIN operation with the ChIP-seq peaks produces only the peaks that at least 
partially overlap any of these open chromatin regions, which are finally materialized. The join is 
performed for each of the selected ChIP-seq samples individually, so that each resulting sample is 
an originally selected ENCODE ChIP-seq sample, but including only the peaks that intersect an open 
chromatin region. 
 
At the time of writing, this query was executed on 10,342 samples from the 
HG19_ENCODE_NARROW_NOV_2017 dataset containing a total of 1,604,183,681 narrow peaks 
and 156 samples from the HG19_ROADMAP_EPIGENOMICS_BED dataset containing 24,574,576 
regions in total; it initially selected 115 ChiP-seq narrow peak samples, regarding 40 antibody 
targets, and 1 DNase-seq sample, including a total of 31,220,157 peaks and 155,235 regions, 
respectively. As result, the query produces 115 samples with a total of 6,836,567 ChiP-seq peaks, 
regarding 40 different ChiP-seq experiment targets. Processing lasted 3 minutes and 28 seconds. 
 

6. Counting distinct DNA mutations in patient groups 
 
“Considering all TCGA public data on somatic mutations, group patients by tumor type and ethnicity, 
and count the distinct DNA somatic mutations in each group.” 
  
MUTATION = SELECT() GRCh38_TCGA_somatic_mutation_masked; 
MUTATION_BY_RACE = COVER(1, ANY;  

groupby: manually_curated__cases__disease_type, clinical__clin_shared__race; 
 aggregate: overlap_count AS COUNT(), barcodes AS BAG(tumor_sample_barcode)) 
MUTATION; 

MUTATION_COUNT = EXTEND(mutation_count AS COUNT()) MUTATION_BY_RACE; 
MATERIALIZE MUTATION_COUNT INTO MUTATION_COUNT; 
 
This example of GMQL query takes into account all public DNA-seq data of TCGA patients, groups 
samples by their tumor type and patient ethnicity, and for each ethnic group of every tumor type it 
extracts and counts its distinct DNA somatic mutations, counting for each of them the overlaps 
among the different samples (each sample is identified by its TCGA barcode). It is worth noting that, 
the COVER operator permits to extract the genomic regions with certain features (e.g., DNA 
mutations) in the considered samples, and for each extracted region the BAG operator collects the 
barcodes of the samples with genomic features in that region.  
 
Conversely, the EXTEND operator counts (through its COUNT() aggregate function) the number of 
distinct mutations in each resulting sample (one for each tumor type and patient race) and stores it 
in the sample metadata; finally, the MATERIALIZE operator returns the obtained result. In particular, 
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the COVER operator extracts a sample for each tumor type and kind of patient race; the regions in 
the result samples are non-overlapping and are formed as contiguous intersections of at least one 
and at most any number of regions (i.e., somatic mutations) in the grouped input samples. For each 
result region, the COUNT aggregate function in the COVER operator computes the number of 
feature regions (i.e., mutations) that contribute to create the result region, and the BAG aggregate 
function gathers the TCGA barcode (identifier) of the sample of each contributing region to keep 
track of them. The metadata of each final resulting sample are the union of the metadata of the 
samples in the input data set that regard the same tumor type and patient race, and are enhanced 
with the number of distinct mutations computed for the tumor type and patient race the sample is 
referring to. 
 
At the time of writing, the query applied on the entire GRCh38_TCGA_somatic_mutation_masked 
TCGA dataset, containing a total of 10,188 DNA-seq data samples and 10,903,607 mutations for 
the 33 different tumors listed in TCGA, extracted a total of 3,327,223 mutations within 141 samples. 
For example, at the time of writing the number of TCGA DNA-seq data samples regarding the Kidney 
Renal Clear Cell Carcinoma (KIRC) was 336, and the result data set included a sample for each of 
the ethnic group represented in the KIRC TCGA data, i.e., Asian, black or African American, and 
white; the total numbers of overall DNA somatic mutations in the input samples for the three ethnic 
groups were 874, 14,353, and 62,601, respectively, and the overall numbers of samples for the three 
groups were 6, 52, and 272, respectively, whereas the corresponding numbers of distinct somatic 
mutations in the result samples were 320, 4,846, and 22,241, respectively. The entire processing, 
for all the 33 tumor types required only 3 minutes and 21 seconds. 
  

7. Combining different data types: DNA copy number variation and 
microRNA data   

 
“Match DNA copy number variation (CNV) and microRNA (miRNA) data samples regarding the same 
biospecimen and extract the CNVs occurring in expressed miRNA genes in the paired samples of 
TCGA Thyroid Carcinoma (THCA) patients.” 
 
CNV = SELECT(manually_curated__data_type == "Copy Number Segment" AND 
 manually_curated__cases__disease_type == "Thyroid Carcinoma") 

GRCh38_TCGA_copy_number; 
MIRNA_GENE = SELECT(manually_curated__data_type == "miRNA Expression Quantification" 

AND manually_curated__cases__disease_type == "Thyroid Carcinoma"; region: 
reads_per_million_mirna_mapped > 1) GRCh38_TCGA_miRNA_expression; 

CNV_GENE_0 = MAP(mirna_genes AS BAG(mirna_id), mirna_gene_symbols AS 
BAG(gene_symbol), mirna_gene_IDs AS BAG(entrez_gene_id); count_name: gene_count; 
joinby: biospecimen__bio__bcr_sample_barcode) CNV MIRNA_GENE; 

CNV_GENE = SELECT(region: gene_count > 0) CNV_GENE_0; 
MATERIALIZE CNV_GENE INTO CNV_GENE; 
 
This example GMQL query searches and combines pairs of TCGA samples of Copy Number 
Variation (CNV) and miRNA-seq data types that regard the same biospecimen, and returns the DNA 
copy number variations in each CNV sample which are within microRNA (miRNA) genes that are 
expressed (reads_per_million_mirna_mapped > 1) in the paired miRNA-seq sample.  
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In particular, the MAP operator on CNV and miRNA-seq datasets first joins samples based on the 
equivalence of their metadata biospecimen_bio__bcr_sample_barcode attribute (the identifier for 
TCGA biospecimens); then, in each pair of samples the COUNT aggregate function calculates the 
number of miRNA genes overlapping each DNA copy number variation, and a few BAG aggregate 
functions are used to collect the miRBase (http://www.mirbase.org/) IDs, the symbols, and the Entrez 
Gene IDs of such genes. Finally, the SELECT operator selects only those copy number variations 
of the paired samples that overlap at least one expressed miRNA gene, and the MATERIALIZE 
operator returns the result.  
 
The resulting dataset contains only those CNV samples, with their metadata, that have a matching 
miRNA-seq sample, and containing only their DNA copy number variations (at least one) that occur 
within an expressed miRNA gene in the matched miRNA-seq sample. At the time of writing the TCGA 
CNV and miRNA-seq data samples were a total of 22,374 and 10,947 samples, respectively. Out of 
them, those of Thyroid Carcinoma (THCA) patients were 492 and 573, respectively. The pairs of 
samples found regarding the same biospecimen were 567; all of them contained DNA copy number 
variations within expressed miRNA genes of the same sample, with an average number of 88 copy 
number variations per sample. At the time of writing, the entire processing time required 1 minute 
and 43 seconds, a limited time considering the amount of processed data. 
 

8. Combining and comprehensive processing of patients’ 
heterogeneous omics data 

 
“In TCGA data of BRCA patients, find the DNA somatic mutations within the first 2000 bp outside of 
the genes that are both expressed with FPKM > 3 and have at least a methylation in the same patient 
biospecimen, and extract these mutations of the top 5% patients with the highest number of such 
mutations.” 
 
EXPRESSED_GENE = SELECT(manually_curated__cases__disease_type == "Breast Invasive 

Carcinoma"; region: fpkm > 3.0) GRCh38_TCGA_gene_expression; 
METHYLATION = SELECT(manually_curated__cases__disease_type == "Breast Invasive 

Carcinoma") GRCh38_TCGA_methylation; 
MUTATION = SELECT(manually_curated__cases__disease_type == "Breast Invasive 

Carcinoma") GRCh38_TCGA_somatic_mutation_masked; 
 
GENE_METHYL = JOIN(DISTANCE < 0; output: LEFT_DISTINCT; joinby: 

biospecimen__bio__bcr_sample_barcode) EXPRESSED_GENE METHYLATION; 
MUTATION_GENE = JOIN(DISTANCE <= 2000, DISTANCE >= 0; output: LEFT_DISTINCT; 

joinby: biospecimen__bio__bcr_sample_barcode) MUTATION GENE_METHYL;  
 
MUTATION_GENE_count = EXTEND(mutation_count AS COUNT()) MUTATION_GENE; 
MUTATION_GENE_top = ORDER(mutation_count DESC; meta_topp: 5) 

MUTATION_GENE_count; 
MATERIALIZE MUTATION_GENE_top INTO MUTATION_GENE_top; 
 

http://www.mirbase.org/
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The query is divided into three sections. Using the SELECT operator, the first one extracts relevant 
samples from three TCGA datasets (gene expressions, DNA methylations, somatic mutations); the 
second one combines the extracted samples and metrically evaluates the localization of their 
genomic regions, by means of two JOIN operations, to produce the relevant mutations searched; 
the third one counts them and selects those of the most mutated patients.  
 
Specifically, the first JOIN operator applies on expressed gene and DNA-methylation datasets. It first 
combines samples based on the equivalence of their metadata 
biospecimen__bio__bcr_sample_barcode attribute (the TCGA biospecimen identifier); then, from 
every pair of samples of each biospecimen, it extracts the expressed gene regions that overlap at 
least a methylation site in the paired DNA methylation sample. Similarly, the second JOIN operator 
applies on the extracted expressed and methylated genes in each sample and on the entire BRCA 
mutation dataset of TCGA; in each sample of the latter one, it finds the DNA somatic mutations 
occurring within the first 2,000 bp upstream or downstream of any of the expressed methylated 
genes extracted in the paired sample of the same biospecimen. Then, the EXTEND operator uses 
the COUNT() aggregate function to determine the number of these mutations in each sample, the 
ORDER operator ranks the samples according to such number and extracts the top 5% samples 
with the highest number of these somatic mutations, and finally the MATERIALIZE operator returns 
the result. Note that this complex query is simply expressed through a few GMQL statements, also 
thanks to the GMQL implicit iteration over all the samples even matched through their metadata. 
 
At the time of writing, the query was executed over all 11,091 gene expression, 12,218 DNA 
methylation and 10,188 somatic mutation samples publicly available in TCGA, for a total of 56.5 GB, 
1.3 TB and 2.3 GB of data respectively. The query initially selects 1,222 samples of expressed gene 
data, 1,234 samples of DNA methylation data, and 985 samples of DNA somatic mutation data of 
TCGA BRCA patients, containing a total of 11,847,376 expressed gene regions, 358,803,211 
methylation sites, and 363,521 DNA mutations, respectively.  
 
The combination of each biospecimen’s gene expression and DNA methylation data identified 1,208 
breast cancer patient samples presenting methylated expressed genes, with an average of 8,573.45 
of such genes for each identified biospecimen. Thanks to the TCGA patients’ clinical data reported 
in the available sample metadata, which GDM seamlessly manages and GMQL carries on during 
the processing, these patients can be clinically characterized. In particular, they have an average 
age at diagnosis of 58.28 years; 552 of them received radiation therapy, whereas 453 did not, and 
for 203 of them it is unknown; 872 patients are estrogen receptor positives and 252 negatives; 713 
are progesterone receptor positives and 349 negatives. Then, the query extracts 636 biospecimens 
having somatic mutations occurring within the first 2000 bp outside of the same biospecimen’s 
expressed and methylated genes. Finally, these mutations in each biospecimen are counted (their 
average number per biospecimen is 3.10), and the mutations of the top 5% patient biospecimens 
with the highest number of such somatic mutations are selected (their average number per 
biospecimen is 22.06).  
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The Table 2 below reports an excerpt of the metadata attributes and of their values associated with 
the selected patients. Notably, the top patient biospecimen has 128 mutations, about three times of 
the ones of the second top patient, who was first diagnosed with BRCA when was about 20 years 
younger; all patients but 8 are positives to progesterone and/or estrogen receptor, and 9 of them 
received radiation therapy whereas 11 did not. The whole execution of this example query on the 
public GMQL system installation, where the entire public TCGA datasets are available, lasted only 
57 minutes; execution time is low when compared to the big amount of samples and genomic regions 
processed, and to the complexity of the processing.  
 

Table 2. Metadata excerpt of the top 5% patients finally selected. 

Order Mutation 
count 

Age at initial 
pathologic 
diagnosis 

Radiation 
therapy 

Estrogen 
receptor 

Progesterone 
receptor 

1 128 90 NO Positive Negative 
2 46 68 NO Positive Positive 
3 43 63 NO Positive Positive 
4 28 61 YES Negative Negative 
5 28 81 YES Negative Negative 
6 27 83  Positive Negative 
7 27 60 YES Negative Negative 
8 25 47 YES Positive Positive 
9 25 55 YES Negative Negative 
10 23 76 NO Positive Negative 
11 22 69 NO Negative Negative 
12 22 50 YES Positive Positive 
13 21 77 NO Positive Positive 
14 20 74 NO Positive Positive 
15 20 77 YES Positive  
16 16 90 NO Negative Negative 
17 14 59 NO Positive Positive 
18 14 41 YES Positive Positive 
19 14 68 YES Positive Positive 
20 13 75 NO Positive Positive 
21 13 64 YES Positive Positive 
22 12 59 NO Negative Negative 
23 11 69 YES Positive Positive 
24 10 69 YES Positive Negative 
25 10 40 YES Negative Negative 
26 10 44 YES Positive Positive 
27 9 63 NO Positive Positive 
28 9 88 NO Positive Positive 
29 8 45 NO Positive Positive 
30 8 61  Positive Negative 
31 8 66  Positive Positive 

 
The same GMQL query can be directly applied on other types of patients or datasets, just by 
changing the SELECT operator parameters. Note that the result dataset includes both genomic 
somatic mutations and clinical metadata of the finally selected patients. The former ones indicate 
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interesting somatic mutations that could be associated with breast cancer (which can be further 
inspected, e.g., using genome browsers); the latter ones allow tracking the provenance of resulting 
samples and ease the biomedical interpretation of the results, facilitating also result sample 
stratification and further evaluations. This association between processed genomic data and their 
biological/clinical metadata is not supported by other system currently available, and represents one 
of the relevant aspects of GDM and GMQL. 
 

9. Calling cell line-specific active enhancers 
 
“From the entire ENCODE ChIP-seq narrow peak dataset, combine all available H3K4me1 and 
H3k27ac histone modifications to identify, for each cell line in ENCODE, putative active enhancers, 
i.e., regions of the genome where both a peak of H3K4me1 and a peak of H3k27ac are present. 
Next, combine the results for the various cell lines to identify those enhancers that are specifically 
present in only one of them.” 
 
me1 = SELECT(assay == "ChIP-seq" AND output_type == "peaks" AND  

experiment_target == "H3K4me1-human") HG19_ENCODE_NARROW_NOV_2017; 
me1_c = COVER(1,ANY; groupby: biosample_term_name) me1; 
ac = SELECT(assay == "ChIP-seq" AND output_type == "peaks" AND  

experiment_target == "H3K27ac-human") HG19_ENCODE_NARROW_NOV_2017; 
ac_c = COVER(1,ANY; groupby: biosample_term_name) ac; 
 
active = JOIN(DISTANCE < 0; output: INT; joinby: biosample_term_name) me1_c ac_c; 
labeled = PROJECT(region_update: cell AS META(ac_c.biosample_term_name, STRING)) active; 
 
cell_specific = COVER(1,1; aggregate: cell_line AS BAG(cell)) labeled; 
MATERIALIZE cell_specific INTO cell_specific; 
 
This example shows the power of GMQL in performing implicit iterations on entire datasets, even 
matching the dataset samples through their metadata; this enables GMQL to take full advantage of 
parallel processing and to apply efficiently on big data in order to provide genome-wide answers to 
fundamental (epi)genomics questions. First, from the entire ENCODE CHiP-seq narrow peak 
dataset, the GMQL query selects all ChIP-seq experiment samples targeting the H3K4me1 histone 
modification and, by means of a COVER operation with the “biosample_term_name” sample 
metadata attribute as groupby key, it combines their replicas in case available for each cell line. The 
same operation is then performed for the ChIP-seq experiment samples targeting the H3K27ac 
histone modification.  
 
Then, the query identifies putative active enhancers as the genomic regions where a H3K4me1 peak 
overlaps with a H3K27ac peak in the same cell line; in order to do so, first a JOIN operation with the 
“biosample_term_name” sample metadata attribute as joinby key is used. The result is a set of 
samples, one for each cell line, where each sample contains the list of putative active enhancer 
regions for a cell line. A PROJECT operation copies the value of the sample metadata attribute 
“biosample_term_name”, describing the cell line, within a new attribute “cell” of every region, so that 
each region in the output is labeled with the name of the cell line of origin. Finally, a COVER(1,1) 
operation, with parameters min and max accumulation equal to 1,  selects only those putative active 
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enhancer regions of each cell line that do not overlap any other enhancer of any cell line; it outputs 
a single sample with all the cell line specific putative active enhancers extracted, each one labeled 
with its cell line name in the new attribute “cell_line”. 
 
Out of all 10,342 ENCODE ChIP-seq narrow peak samples available on November 2017 (containing 
a total of 1,604,183,681 enriched regions), initially the GMQL query selects 31,146,835 H3K4me1 
regions from 182 replicate samples and 23,457,101 H3K27ac regions from 231 replicate samples, 
from 64 and 77 different human cell lines; after combining sample replicates, 13,621,664 H3K4me1 
regions from 64 samples and 10,379,105 H3K27ac regions from 77 samples, one sample for each 
cell line, remain. The putative active enhancer regions extracted (where both H3K4me1 and 
H3K27ac peaks overlap) are 5,786,721 within 56 samples, one for each cell line with both H3K4me1 
and H3K27ac data. Finally, the extracted cell line specific putative active enhancers are 1,406,494, 
regarding 56 different cell lines, with an average of about 25,116 ones per cell line.  
 
At the time of writing, query execution required only 9 minutes and 23 seconds. An excerpt of the 
final output of the query follows in Table 3. 
 

Table 3: Excerpt of the cell line specific putative active enhancers extracted. 
chr left right strand cell_line 
chr1 162007355 162007518 * SK-N-MC 
chr2 68330641 68330886 * osteoblast 
chr2 189184720 189184799 * SK-N-SH 
chr5 79140318 79140346 * osteoblast 
chr6 3006575 3006901 * neutrophil 
chr6 133014305 133014320 * thoracic aorta 
chr8 19211561 19211765 * body of pancreas 
chr8 66267133 66268538 * A549 
chr8 77650141 77650203 * SK-N-MC 
chr9 14888447 14889044 * SK-N-MC 
chr10 44528641 44528739 * body of pancreas 
chr10 118500245 118500438 * fibroblast of lung 
chr11 59325121 59325258 * tibial nerve 
chr12 96421146 96421605 * neutrophil 
chr18 26308257 26308406 * osteoblast 
chrX 151267578 151268406 * bipolar neuron 
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