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Genomic Computing 
Background: Next Generation Sequencing

• Next Generation Sequencing technology is about to provide 
affordable (in time and cost) and precise determinations of 
genome wide:

– DNA sequence / variations (DNA-seq)
– gene subregions’ activity (RNA-seq) [all gene test]
– protein-DNA interaction regions (ChIP-seq)                     
– open chromatin (DNase-seq) 

Goal of $1,000 full genome sequencing                                       
in under an hour has just met

• Very many DNA-interacting proteins / subjects / conditions 
will be soon evaluated

– Personalized medicine (diagnosis and treatment)
– Each NGS test can generate 0.4TB -> Big Data scenario



Source: http://blog.goldenhelix.com/grudy/a-hitchhiker%E2%80%99s-
guide-to-next-generation-sequencing-part-2/

Genomic Computing 
Big data analysis with Next Generation Sequencing

My talk
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Genomic Computing 
The big picture: Distributed heterogeneous data
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Genomic Computing 
Current practice – UCSC Genome Browser
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Genomic Computing 
The challenge: Understanding biologists’ needs

• Working together with biologists for giving answers to the 
problems behind the «courtesy» slide

Courtesy of Prof. Pelicci, IEO
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Genomic Computing 
Challenge: Genotype–phenotype discovery

• (Epi)genotype-phenotype relationship discovery: 
understanding genomic regions, genome variations and their 
associations with different phenotypes 

– highly heterogeneous scenario

• It requires evaluating, in several different conditions and 
types of individuals:

– genome (DNA) sequence variations   
– gene activity & its regulation
– occurring interactions
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Genomic Computing 
Main questions

Scientist’s typical questions
(from our interaction with IEO - European Oncology Institute
and IIT - Italian Institute of Technology)

• Can interesting DNA regions and their relationships be 
discovered using genome-wide queries?

• Can genomic data of patients be grouped according to 
clinical phenotype and compared? 

• Can the genomic features of all the genes involved in the 
same biological process be extracted and then analyzed?

• Can we retrieve portions of the genome of given patients, 
extracting them from remote servers and comparing them?
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Genomic Computing 
Research agenda

• Can interesting DNA regions and their relationships be 
discovered using genome-wide queries?

Genometric query language
• Can genomic data of patients be grouped according to 

clinical phenotype and compared? 
Genometric query language + clustering

• Can all the features of the genes involved in the same 
biological process be extracted and then analyzed?

Genometric query language + data analysis

• Can we retrieve portions of the genome of given patients, 
extracting them from remote servers and comparing them?

Genometric query language + indexing & search
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Genomic Computing 
Research agenda by topics

• Data model: design a simple and format-independent data 
model for describing datasets with both genomic regions
and general provenance information (including phenotype)

• Query language: design a query language where both 
genometric aspects (about the placement of regions on the 
genome) and provenance can be queried at a high level of 
data independence and transparency

• Integrative data analysis: translating query results into a 
genome space which is the ideal start point for correlation
and network analysis

• Data search: design protocols for data crawling and 
indexing based on the data model



Genomic Data Model

11
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Genomic Computing 
Genomic Data Model

Within the same sample, two kinds of data:
• Region values aligned w.r.t. a given reference, with specific 

left-right ends within a chromosome, and with several 
associated attributes (e.g. p-value of region significance)

• Metadata, with free-format attribute-value pairs, storing all the 
knowledge about the sample

A C G T T A A C G G A T A C C A A C

left (position) right (position)

chr 
(chromosome)

strand (direction)

DNA
r



Genomic Computing 
Model rationale

• Regions of the model are data format independent and 
provide an interoperability framework for comparing data on 
mutations, expression or regulation using regions as 
common ground

• Metadata attribute-value pairs of the model are info-system 
independent and provide an interoperability framework for 
comparing samples based upon their biological aspects

13
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Genomic Computing 
Genomic Data Model – Example

0.1 0.6 Tumor_type = brca
Patient_age = 75

0.5 0
Tumor_type = brca
Patient_age = 63
Sex = Female

0.1 0 0.8 0.1
Tumor_type = brca
Patient_age = 58

Sample 1

Sample 3

Sample 2
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Genomic Computing 
Genomic Data Model – Example

• Region values: {expID, region:(chr, left, right, strand), p-value}

• Metadata: {expID, attribute, value}



Genomic Computing
Genomic Data Model - Samples and datasets

16

Samples and datasets
• Every sample corresponds to an «experiment», with an ID
• Every dataset is a named collection of samples with the 

same region data schema
Data format independent; interoperability framework for 
comparing data samples based upon their biological aspects



Genomic Computing
Genomic Data Model - Mapping examples
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Genomic Computing
Genomic Data Model - Mapping examples

18



Genomic Computing
Genomic Data Model - Mapping examples
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DNA-seq (mutations)
(id, ('chr,start,stop,strand), (A,G,C,T,del,ins,inserted,ambig,Max,Error,A2T,A2C,A2G,C2A,C2G,C2T))
(1, (chr1, 917179, 917180,*), (0,0,0,0,1,0,'.','.',0,0,0,0,0,0,0,0))
(1, (chr1, 917179, 917179,*), (0,0,0,0,0,1,G,'.',0,0,0,0,0,0,0,0))

RNA-seq (gene expression)
(id, ((chr,start,stop,strand), (source,type,score,frame,geneID,transcriptID,RPKM1,RPKM2,iIDR))
(1, (chr8, 101960824, 101964847,-), ('GencodeV10', 'transcript', 0.026615, NULL, 
'ENSG00000164924.11', 'ENST00000418997.1', 0.209968, 0.193078, 0.058))

Annotations
(id, (chr,start,stop,strand), (proteinID,alignID,type))
(1, (chr1, 11873, 11873, +), ('uc001aaa.3', 'uc001aaa.3', 'cds'))
(1, (chr1, 11873, 12227, +), ('uc001aaa.3', 'uc001aaa.3', 'exon'))
(1, (chr1, 12612, 12721, +), ('uc001aaa.3', 'uc001aaa.3', 'exon'))
(1, (chr1, 13220, 14409, +), ('uc001aaa.3', 'uc001aaa.3', 'exon'))

ChIA-PET (denoting 3D genomic loops, head is assembled with coordinates, tail is in the schema)
(id,(chr,headstart,headstop,strand), (loopType, tailChr, tailStart, tailStop, PETcount, pValue, qValue))
(1, (chr1,7385626,7389841,*), ('Inter-Chromosome', chr17, 3081653, 3084755, 50, 0.0, 0.0)

20

Genomic Computing
Genomic Data Model - Other mapping examples



Query Language
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(Motivational example and detailed description)
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Genomic Computing 
GMQL motivational example

The language allows for queries on the genome involving large 
datasets describing:

• Genomic signals (i.e. experiment dataset regions)
• Reference regions (e.g. TSS, genes, promoters, enhancers)
• Distance rules (e.g. the nearest enhancer that stands  

at least at 100 kb from the nearest gene)

Enhancer Promoter

GeneReference DNA
Experimental dataset 1

Distance pattern

Experimental dataset 2

Experimental dataset 3

Reference regions
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Identification of distal bindings in transcription regulatory regions
Find all CTCF transcription factor (TF) binding regions of ChIP-seq data 
regarding human cancer cell line HeLa-S3, which are farther than x kb 
(e.g. 1000 kb) from the transcription start site (TSS) of the nearest gene. 
Then, for the same cell line find all H3K4me1 histone modification (HM) 
regions that are the nearest regions farther than x kb from a TSS.
Finally, consider known enhancer (EN) regions and return a list of     
EN-HM-overlapping TF regions.

Genomic Computing 
GMQL motivational example – Distal bindings

Nearest gene

HM

TF1

TF2

REF
x

TSS

EN

GMQL 
result  

HM:   Histone mark 
experiment

TF:    Transcription factor
experiment

REF:  Reference DNA regions
EN:    Enhancer
x:       Threshold distance

DNA region

Not respecting
the distance threshold
Not EN or HM
overlapping
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Genomic Computing 
GMQL motivational example – Distal bindings

HM = SELECT(dataType == 'ChipSeq‘ AND cell == 'HeLa-S3‘ 
AND antibody == ‘H3K4me1') PEAK;

TF = SELECT(dataType == 'ChipSeq‘ AND cell == 'HeLa-S3‘ 
AND antibody == ‘CTCF') PEAK;

TSS = SELECT(type == ‘TSS‘) ANNOTATION;
EN = SELECT(type == ‘enhancer‘) ANNOTATION; 
HMa = JOIN(distance > 1000000, minDistance(5); output: right) TSS HM;
TFa = JOIN(distance > 1000000, minDistance(5); output: right) TSS TF;
HMb = JOIN(distance < 0; output: int) EN HMa;
HMc = MERGE() HMb;
TF_res = JOIN(distance < 0; output: right) HMc TFa;

Nearest gene

HM

TF1

TF2

REF
x

TSS

EN

GMQL 
result  

HM:   Histone mark 
experiment

TF:    Transcription factor
experiment

REF:  Reference DNA regions
EN:    Enhancer
x:       Threshold distance

DNA region

Not respecting
the distance threshold
Not EN or HM
overlapping
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Genomic Computing 
GenoMetric Query Language 

GenoMetric Query Language (GMQL) is defined as a sequence 
of algebraic operations following the structure:

< variable > = < operator > (< parameters >) < variable >
– Every variable is a dataset including many samples

– Offers high-level, declarative operations which operate both 
on regions and meta-data -> thus, each operation 
progressively builds the regions and meta-data of its result

– Inspired by SQL and Pig Latin

– Targeted towards cloud computing



Genomic Computing 
Overall view on GMQL operations

Classic relational operations – with genomic extensions
• SELECT, PROJECT, EXTEND, ORDER, GROUP, 
MERGE, UNION, DIFFERENCE 

Domain-specific genomic operations:
• COVER, (GENOMETRIC) JOIN, MAP

Utilities:
• MATERIALIZE

26
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Genomic Computing 
Sample selection – Example SELECT

0.1 0.6 Tumor_type = brca
Patient_age = 75

Selection of the samples where a selection predicate p is 
true (e.g. select patients younger than 70 years) 

0.5 0
Tumor_type = brca
Patient_age = 63
Gender = Female

0.1 0 0.8 0.1
Tumor_type = brca
Patient_age = 58

S2 = SELECT(p) S1;

Example: S2 = SELECT(Patient_age < 70) S1;
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Genomic Computing 
Region selection – Example SELECT

0.1 0.6 Tumor_type = brca
Patient_age = 75

0.5 0
Tumor_type = brca
Patient_age = 63
Gender = Female

0.1 0 0.8 0.1 Tumor_type = brca
Patient_age = 58

Selection of the regions where a selection predicate p is 
true (e.g. select those regions which have a score greater 
than 0.5) 

S2 = SELECT(region: p) S1;

Example: S2 = SELECT(region: score > 0.5) S1;
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Genomic Computing 
Region projection – Example PROJECT

Tumor_type = brca
Patient_age = 75

Tumor_type = brca
Patient_age = 75

Projection of the regions: for each gene in a set, take its 
promoter (e.g. from -2kbp, to +1kbp from the TSS) 

S2 = PROJECT(p) S1;

Example: S2 = PROJECT(region_update: 
start = start – 2000, stop = start + 1000) S1;

S1

S2
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Genomic Computing 
Metadata extension – Example EXTEND

5 3102 2

5 01

Tumor_type = brca
Patient_age = 75
Region_count = 3

Tumor_type = esca
Patient_age = 78
Region_count = 5

5 3

Tumor_type = chol
Patient_age = 85
Region_count = 2

Count the regions in each sample and store it in metadata 

S2 = EXTEND(p) S1;

Example: S2 = EXTEND(Region_count AS COUNT()) S1;
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Genomic Computing 
Order and select top k – Example ORDER

Tumor_type = brca
Patient_age = 75
Region_count = 3
Order = 2

Tumor_type = esca
Patient_age = 78
Region_count = 5
Order = 1

5 01

5 3102 2

5 3

Tumor_type = chol
Patient_age = 85
Region_count = 2
Order = 3

Order by region_count metadata and take the top 2 samples
S2 = ORDER(Ai; [TOP: k]) S1;

Example: S2 = ORDER(Region_count; TOP: 2) S1;
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Genomic Computing 
Group by metadata – Example GROUP

5 01

Tumor_type = brca
Patient_age = 75
Group = 1
Min = 0

5 3102 1

Tumor_type = esca
Patient_age = 78
Group = 2
Min = 1

5 3

Tumor_type = chol
Patient_age = 87
Group = 3
Min = 3

534 6

Tumor_type = esca
Patient_age = 78
Group = 2
Min = 1

Group samples according to the value of tumor and 
compute the region minimum score of each group
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Genomic Computing 
Region merge – Example MERGE

Type = ChipSeq
Antibody = CTCF
Replicate = 1
Type = ChipSeq
Antibody = CTCF
Replicate = 2

Type = ChipSeq
Antibody = CTCF
Replicate = 3

Type = ChipSeq
Antibody = CTCF
Replicate = 1
Replicate = 2
Replicate = 3

Collapse a bunch of samples (both region and metadata) 
into an unique one          S2 = MERGE() S1;

S1.s1

S1.s2

S1.s3

S2
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Genomic Computing 
Region union – Example UNION

Tumor_type = brca
Experiment = mirna

Tumor_type = brca
Experiment = rnaseq

Return a single dataset with all the samples in two input 
datasets, merging their region attributes if different

Tumor_type = brca
Experiment = mirna

Tumor_type = brca
Experiment = rnaseq

S3 = UNION() S1 S2;

S1

S2

S3
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Genomic Computing 
Region difference – Example DIFFERENCE

Return all the regions in the first dataset that do not 
overlap any region in the second one

Tumor_type = brca
Experiment = mirna

Tumor_type = brca
Experiment = rnaseq

S1.Tumor_type = brca
S1.Experiment = rnaseq
S2.Tumor_type = brca
S2.Experiment = mirna

S1

S2

S3

S3 = DIFFERENCE() S1 S2;



COVER(ALL,ALL) AND COVER(2,ANY)COVER(1,ANY) OR

S2 = COVER(min, max) S1;

36

Genomic Computing 
Dataset operations: COVER

• ALL: number of samples in the dataset
• Jaccard indexes can be used instead of min-max
• An aggregate function f can be computed for regions 

forming the cover

• Produces new regions where there are between MIN and 
MAX regions of the operand dataset
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Tumor_type = brca
Tumor_grade = g3

Tumor_type = brca
Tumor_grade = g2

Tumor_type = brca
Tumor_grade = g2

Tumor_type = brca
Tumor_grade = g2
Tumor_grade = g3

2 2 3 1 2 1 1

COVER(2, ANY): find portions of the genome that are 
covered by at least two regions

Genomic Computing 
Region Cover – Example COVER

S2 = COVER(2, ANY) S1;

S1.s1

S1.s2

S1.s3

S2 23    22



• Given two sets of samples, JOIN builds the pairs of regions 
and metadata where a join predicate p is true. 

• Region of results are composed from regions of the operands 

S3 = JOIN(p, comp-op) S1 S2;

• Functions minDistance and distance can be used in the 
predicate

Genomic Computing 
Dataset operations: JOIN

38
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Genomic Computing 
Metadata join – Example JOIN

Metadata join: select pairs of matching samples (e.g. with 
the same “Type”)

Type = uvm
Patient = 123
Gender = M

Type = brca
Patient = 10
Age = 88

Type = brca
Patient = 211

Type = sarc
Patient = 12

Type = sarc
Patient = 444
Age = 88

Type = brca
Patient = 333
Grade = g3

Type = sarc
Patient = 12
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Join at min-distance: associate each region in the former 
dataset with the closest in the latter

Genomic Computing 
Region Join – Example JOIN

A B feature = transcripts

2 feature = TFBSs

S1.feature = transcripts
S2.feature = TFBSs

S3 = JOIN(MINDISTANCE(1); output: RIGHT) S1 S2;

1-A 3-B

1 3

S1

S2

S3



S2 = JOIN(DISTANCE < 1000; output: CAT) R, S1;

d = 400

d = 2500 d = 1100

d = 0

Matching pairs 
and region 

composition

R

3 5

e1

3 5 e2

All pairs

41

Genomic Computing 
Dataset operations: JOIN example

53

R

e1



S2 = MAP(newAttr AS MIN(attr)) R S1;

2 1 3

2 1 43 2

1

2 1

S1

R

S2

42

Genomic Computing 
Dataset operations: MAP

• Computes aggregate functions over samples of S1 which 
intersect with the regions of R

0
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Compute an aggregate function (e.g. AVERAGE) on all the 
regions intersecting the reference

Genomic Computing 
Region Map – Example MAP

annotation = genes
provider = RefSeqA B

feature = SNP

2 4

R.annotation = genes
R.provider = RefSeq
S1.features = SNP

S2 = MAP(average_score AS AVG(score)) R S1;

R

S1

S2

S2 = MAP() R S1;
COUNT is computed by default
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Genomic Computing 
MAP opens to Genome Space abstraction

• MAP operations, through reference regions R, extract and 
standardize genomic features expressed in distinct datasets

• Genome Space: simplified structured outcome, ideal format 
for data analysis
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GMQL 
MAP
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Genomic Computing 
Next: MAP – Genometric space abstraction 

• Genometric spaces represent adjacency matrices, i.e. 
networks

– Network analysis methods (e.g. page rank, hub/authority, 
community detection, …)
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Genomic Computing 
MAP result visualization: Genome Browser

Res = MAP(count_name: mutCount) Genes Dataset;

Dataset

Genes

Res
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Genomic Computing 
MAP result visualization: Heatmap viewer

It requires: 
• Partitioning by experiment classes
• Adding names to regions and to experiments (from metadata)
• Adding colors
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Genomic Computing
Data Viewer: Region clustering

Cluster3 
(low density
pattern-2)

Cluster2 
(low density
pattern-1)

Cluster1 
(high density)

Cluster4 
(basal)
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Genomic Computing 
Data Viewer: MAP result visualization

GenoMetric Space Explorer: http://www.bioinformatics.deib.polimi.it/GeMSE/ 
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Genomic Computing
Data Viewer: Dendrogram

Cut-1: 
2 clusters

Cut-2: 
4 clusters

Distance
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Genomic Computing
Data Viewer: Pattern extraction on samples
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Genomic Computing
Data Viewer: Metadata aggregation

For biological/clinical interpretation of genomic data processing, 
and data stratification based on of biological/clinical metadata
values and/or patterns of different genomic feature regions



Implementation
(Ver. 1 & Ver. 2)

64
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Genomic Computing 
GMQL implementation, Ver. 1

• GMQL similar to Pig Latin (by Yahoo! Research)
– Algebraic language for data-intensive applications on 

Apache Hadoop, a framework for parallel computing which 
executes Google MapReduce programs

• Implementation strategy: develop a translator to Pig Latin
– Easier development and maintenance 
– Big company involvement ensures development
– Use cloud computing power to obtain efficiency and 

scalability



Genomic Computing 
System architecture

66



Genomic Computing 
System architecture

67



Genomic Computing 
System architecture - Repository

68



Genomic Computing
GMQL query translation to PIG over Hadoop

69

GMQL query Translator Pig over 
Hadoop

Motivation:
• Clear & compact user code
• User-transparent optimization



Genomic Computing
Translation example

70

• 1 statement => 25 Pig Latin lines 
of code + auxiliary Java function

• The translator takes also care of 
updating the variable schema

• Error handling
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Genomic Computing 
GMQL to Pig Latin translation

•



Genomic Computing 
Optimization in translation

1. Parallelism by splitting computations:
• By chromosome
• By experiment

2. Join and Map have a translation which avoids cross
products, based on sequential scan of regions

Pig Latin shows its ability to scale on hundreds or 
thousands of experiments and multi-node systems

72



Genomic Computing 
MAP and JOIN vs. competitors

73



Genomic Computing
System architecture, Ver. 2

• Holistic data management system for genomics
• Uses cloud-based computing for querying thousands of 

heterogeneous datasets

74
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Genomic Computing 
GMQL implementation, Ver. 2

• A different approach, with language-independent   
intermediate representation 

• Targeting also usability from within R and Galaxy

IR Semantics

GMQL Embedded
GMQL

Logical
GMQL

Spark Flink ???

Syntax

Implementation API to IR



Genomic Computing 
GMQL implementation, Ver. 2 - Scala API

76



Genomic Computing 
GMQL implementation, Ver. 2 - IR 
Example

77
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Genomic Computing 
GMQL implementation, Ver. 2

• New optimization options

GMQLGMQL IR Optimized
IR Implementation

Query
Optimizer

Low Level
Optimizer

1) Node reordering / deletion
2) Select condition refinement

1) Alternative algorithms
2) Parallelism tuning
3) Data partitioning
4) Caching



Genomic Computing 
Optimizations at compile-time & execution-time

Idea:
• Let Flink/Spark/… engines implement common and 

well known optimization
• Exploit the intermediate representation in order to 

implement optimizations which are driven by the 
semantics of GMQL

• Meta-first optimization
• Operator swapping optimization

• Other optimizations based on algorithms for parallel 
execution on the cloud

79



Genomic Computing 
Meta-first optimization

Under certain conditions (meta-separability), it is 
possible to compute the metadata side of the query 
strictly before the region data side.

80



Genomic Computing 
Meta-separability

GMQL queries are 
always meta-separable, 
except for the ones 
which use the EXTEND 
operator

(EXTEND operator 
computes and 
aggregates on the region 
data and stores the 
result in the metadata)

81



Genomic Computing 
Meta-first optimization - Workflow

ReadMD

StoreMD

ReadRD

StoreRD

ID
s

• Compute metadata side 
of the query

• Retrieve the IDs from the 
metadata result

• Use the IDs to 
selectively load only the 
files that will appear in 
the output

82



Genomic Computing 
Where it helps?

Affected queries are the ones which contain one or 
more metadata selection (far from the Readings), 
metadata join and metadata group by; those operations 
cut the size of the output

83



Genomic Computing 
Operator swapping optimization

Some reordering of the execution plan can not be inferred 
by lower level optimizer, since they are motivated by 
GMQL semantics

DS1 DS2 DS3

Join
left

Diff

DS1 DS3 DS2

Join
left

Diff

84



Genomic Computing
Binning strategy optimization

Bin1        Bin2        Bin3         Bin4         Bin5         Bin6        Bin75
bin
6

n7

Strategy for intersection:
1. Partition the genome in bins
2. Assign each region to all the bins it overlaps
3. Search for intersections within each bin

In the case of more complex operations, we change the 
way in which the regions are assigned to the bins

85



In order to avoid the duplicates production, when two 
regions overlap, an output is emitted if, and only if, at least 
one of them begins in the considered bin

• Bin 2: overlap => red region begins => Output e
• Bin 3: overlap => no region begins => Output not emitted!

Genomic Computing
Binning strategy

Avoiding output duplicates:

bin 1 bin 2 bin 3

86



Genomic Computing
Binning tradeoff

• Smaller bins: smaller search space, but higher number of 
replicates

• Optimal binning size depends on:
– Number of regions and local density
– Region length distribution
– GMQL operation and parameters
– System settings (e.g., number of nodes, amount of 

memory, …)

0
50

100
150
200
250
300

1K 5K 10K 50K 100K 200K 500K 1M 10M

Bin length 

Ex
ec

. t
im

e
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Repository
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Genomic Computing 
Repository pipeline

90



Stores experimental datasets and annotations collected from 
external databases

• ENCODE (more than 4000 processed datasets for humans 
and mices, relevant to epigenomic research) 

• Roadmap Epigenomics (about 1000 human epigenomic
datasets for stem cells and ex-vivo tissues)

• TCGA (The Cancer Genome Atlas, providing more than 
50,000 processed datasets for more than 30 cancer types, 
including mutations, copy number variations, gene and 
miRNA expressions, methylations)

Genomic Computing 
Repository – Experimental data

91



Annotation data are also extracted from external references,
based upon the needs of given research projects

• Genes (UCSC, RefSeq, Ensembl, GENCODE)
• Transcription Start Sites (SwitchGear)
• Transcription Factor Binding Sites (UCSC, ENCODE)
• CpG islands (UCSC)
• miRNA target sites (UCSC)
• Enhancers (Vista)

Genomic Computing 
Repository - Annotations

92



Genomic Computing 
Repository content

93



User Interface
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http://www.GMQL.eu/

Genomic Computing
GMQL Web interface (http://www.GMQL.eu/)

95
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Genomic Computing
GMQL results on Integrated Genome Browser



Genomic Computing 
GMQL examples – Distal bindings: Visualization of results

98

Results are provided to user in GTF or Tab-delimited format



Genomic Computing 
GMQL examples – Distal bindings: Visualization of results

99



Genomic Computing 
PyGMQL within Jupyter Notebooks & RGMQL

100

Integrated environments 
where the bioinformatician
can:
• Run GMQL queries on 

local or remote data
• Integrate the results with 

external libraries of 
Python or R/Bioconductor

• Visualize the results

https://pygmql.readthedocs.io/en/latest/ 
https://bioconductor.org/packages/release/bioc/html/RGMQL.html 



Genomic Computing 
GMQL workspace in FireCloud at Broad Institute

101

https://pygmql.readthedocs.io/en/latest/ 
https://bioconductor.org/packages/release/bioc/html/RGMQL.html



Applications
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Genomic Computing 
Transcription Factor query & Genome Space

Source: ENCODE ChIP-seq datasets for transcription factors (TF)
Goal: Generation of a transcriptional network from ChIP-seq data
Method: Select TFs and genes, and derive TFs-Genes links. Build a
TFxGenes matrix Mij such that Mij = number of binding sites of TF i in the gene
region j, Mij = 0 if no binding.

# Extract gene information, some of them tagged with TF-encoding

GENE_ANN = SELECT(type == 'gene' AND provider == 'RefSeq') 
ANNOTATION;

GENES = SELECT(region: feature == ’gene’) GENE_ANN; 

TF_GENES = SELECT(region: encode_TF == ‘yes’) GENES; # red in 
next slide

# Collect TF samples (122)

TF = SELECT(dataType = 'ChipSeq' AND subType = 'TF' AND  

cell == 'k562' AND treatement == 'None') ENCODE_PEAK;    
# Build TF Genomic Space

GS_TF = MAP(count_name: binding_num) GENES TF;
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Genomic Computing 
Genome Space building

G1 G2 G4

TF1
TF2
TF4

Ann

Cell line: K562
(CML)
# TFs:     122
# Nodes:  6240
# Edges: 30587

TF2

TF1 G1

G2

TF4
G4

G3=TF3

G3=TF3
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Genomic Computing 
Restriction of TF to open chromatin regions

# Collect open chromatin samples

DHS_2 = SELECT(dataType == 'DnaseSeq' AND 
cell == 'k562') ENCODE_PEAK; # 2 samples

FAIRE = SELECT(dataType == 'FaireSeq' AND 
cell == 'k562') ENCODE_PEAK; # 1 sample 

# Merge DHS replicates in one sample

DHS = FLAT(2, ANY; aggregate: pValue AS MIN(pValue)) 
DHS_2;

# Merge open chromatin regions from DHS and FAIRE assays

DHS_FAIRE = UNION() DHS FAIRE;
OPEN = COVER(1, ANY; aggregate: pValue AS MIN(pValue)) 

DHS_FAIRE;
# Extract TFs in open chromatin regions only (active DNA 
# binding)

TF_OPEN = JOIN(distance < 0; output: left) TF OPEN;
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Genomic Computing 
Transcription Factor Genome Space

# TF Genomic Space

GS_TF_0 = MAP(count_name: binding_num) GENES TF_OPEN;

GS_TF = SELECT(binding_num > 0) GS_TF_0;

G1 G2 G3
TF3

G4 G5 … Gn

TF1 1 0 1 1 0 … 1

TF2 1 0 1 0 0 … 1

TF3 0 0 0 0 1 … 0

… 0 0 0 1 0 … 1

TFn 0 0 0 1 1 … 1
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Genomic Computing 
Genome Space building

G1 G2 G4Ann

TF1

TF2

TF4

DHS

FAIRE

TF2

TF1

TF4

G4

G2 Cell line: K562
(CML)
# TFs:    95
# Nodes: 1717
# Edges: 2367

G3=TF3

G3=TF3

G1



From Genometric Space to networks: 
K562 transcription network
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Summary & Outlook
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Genomic Computing 
Conclusions

• GDM: a data format-independent genomic data model
– For genomic region data and related metadata
– Easing integration and processing of heterogeneous

genomic data 

• GMQL: a high-level declarative language
– Easing the expression of even complex queries on 

numerous data of multiple different types
– Running also on cloud computing environments
– Supporting a first processing also of big data, to extract 

the relevant (usually smaller) ones for further processing

• Several GDM & GMQL application examples
– Characterizing interplay and function of genomic regions
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Genomic Computing Future
Vision: Pattern-based queries from genome browser
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Genomic Computing Future 
Vision: Cycle Query–Analysis–Visualization

• Query
– By example
– Using public DBs & ontologies
– Search remote data
– Query / extract remote data

• Analysis
– (un)supervised learning
– Region finding
– Motif / pattern finding

• Visualization
– Clustering
– Long range interactions

Visualization

Query

Analysis



Genomic Computing Future 
Long-term vision: Internet of Genomes

• The platform (client & servers) and language should 
support queries/computations involving different servers
- Minimizing the information to be transferred among 

servers and between them and the client
• Each server should expose its own data for access by 

exploratory search & crawlers 
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Genomic Computing 
Resources & Web sites

Overview: http://www.bioinformatics.deib.polimi.it/genomic_computing/
GMQL web site: http://www.bioinformatics.deib.polimi.it/GMQLsystem/

Includes:
• Download open source code & documentation

– GMQL System code & APIs - wiki
– GMQL Web interface code - wiki & user manual
– GMQL Package and Quick Start installation
– GMQL Docker deploy
– GMQL workspace in the Broad Institute FireCloud platform
– PyGMQL Python library code & documentation
– RGMQL R/Bioconductor package code

• Web and REST interfaces: http://www.gmql.eu/
– User-friendly interface to creating/managing GMQL queries
– Repository of ENCODE / Roadmap Epigenomics / TCGA datasets
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Genomic Computing 
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Thank you for your attention!   

Any question?

Thank you for your attention!

Genomic Computing
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