
Dipartimento
di Elettronica, Informazione e

Bioingegneria

Genomic Computing
Politecnico di Milano

Genomic Data Model and GenoMetric Query Language
as research enabler to discover genome properties
Marco Masseroli and Stefano Ceri
(joint work with several PhD students)

Politecnico di Milano, BioInformatics Group

2

Genomic Computing
Background: Next Generation Sequencing

• Next Generation Sequencing technology is about to provide
affordable (in time and cost) and precise determinations of
genome wide:

– DNA sequence / variations (DNA-seq)
– gene subregions’ activity (RNA-seq) [all gene test]
– protein-DNA interaction regions (ChIP-seq)
– open chromatin (DNase-seq)

Goal of $1,000 full genome sequencing
in under an hour has just met

• Very many DNA-interacting proteins / subjects / conditions
will be soon evaluated

– Personalized medicine (diagnosis and treatment)
– Each NGS test can generate 0.4TB -> Big Data scenario

Source: http://blog.goldenhelix.com/grudy/a-hitchhiker%E2%80%99s-
guide-to-next-generation-sequencing-part-2/

Genomic Computing
Big data analysis with Next Generation Sequencing

My talk

3

4

Heterogeneous
Genomic

Data Sources

Heterogeneous
Clinic

Data SourcesPersonal Patient Data

Genome
Browser

Data
Analytics

Ontological
Knowledge

G
enom

ic Data Integration
Publishing / Craw

ling / Searching

C
linical D

ata Integration
Biologist Clinician

Medical Literature
Clinical Protocols

Genomic Computing
The big picture: Distributed heterogeneous data

5

A
 n

um
be

r o
f

ge
no

m
ic

 fe
at

ur
es

 (t
ra

ck
s)

One macro genomic region

D
at

a
tra

ck
s

Genomic Computing
Current practice – UCSC Genome Browser

6

Genomic Computing
The challenge: Understanding biologists’ needs

• Working together with biologists for giving answers to the
problems behind the «courtesy» slide

Courtesy of Prof. Pelicci, IEO

7

Genomic Computing
Challenge: Genotype–phenotype discovery

• (Epi)genotype-phenotype relationship discovery:
understanding genomic regions, genome variations and their
associations with different phenotypes

– highly heterogeneous scenario

• It requires evaluating, in several different conditions and
types of individuals:

– genome (DNA) sequence variations
– gene activity & its regulation
– occurring interactions

8

Genomic Computing
Main questions

Scientist’s typical questions
(from our interaction with IEO - European Oncology Institute
and IIT - Italian Institute of Technology)

• Can interesting DNA regions and their relationships be
discovered using genome-wide queries?

• Can genomic data of patients be grouped according to
clinical phenotype and compared?

• Can the genomic features of all the genes involved in the
same biological process be extracted and then analyzed?

• Can we retrieve portions of the genome of given patients,
extracting them from remote servers and comparing them?

9

Genomic Computing
Research agenda

• Can interesting DNA regions and their relationships be
discovered using genome-wide queries?

Genometric query language
• Can genomic data of patients be grouped according to

clinical phenotype and compared?
Genometric query language + clustering

• Can all the features of the genes involved in the same
biological process be extracted and then analyzed?

Genometric query language + data analysis

• Can we retrieve portions of the genome of given patients,
extracting them from remote servers and comparing them?

Genometric query language + indexing & search

10

Genomic Computing
Research agenda by topics

• Data model: design a simple and format-independent data
model for describing datasets with both genomic regions
and general provenance information (including phenotype)

• Query language: design a query language where both
genometric aspects (about the placement of regions on the
genome) and provenance can be queried at a high level of
data independence and transparency

• Integrative data analysis: translating query results into a
genome space which is the ideal start point for correlation
and network analysis

• Data search: design protocols for data crawling and
indexing based on the data model

Genomic Data Model

11

12

Genomic Computing
Genomic Data Model

Within the same sample, two kinds of data:
• Region values aligned w.r.t. a given reference, with specific

left-right ends within a chromosome, and with several
associated attributes (e.g. p-value of region significance)

• Metadata, with free-format attribute-value pairs, storing all the
knowledge about the sample

A C G T T A A C G G A T A C C A A C

left (position) right (position)

chr
(chromosome)

strand (direction)

DNA
r

Genomic Computing
Model rationale

• Regions of the model are data format independent and
provide an interoperability framework for comparing data on
mutations, expression or regulation using regions as
common ground

• Metadata attribute-value pairs of the model are info-system
independent and provide an interoperability framework for
comparing samples based upon their biological aspects

13

14

Genomic Computing
Genomic Data Model – Example

0.1 0.6 Tumor_type = brca
Patient_age = 75

0.5 0
Tumor_type = brca
Patient_age = 63
Sex = Female

0.1 0 0.8 0.1
Tumor_type = brca
Patient_age = 58

Sample 1

Sample 3

Sample 2

15

Genomic Computing
Genomic Data Model – Example

• Region values: {expID, region:(chr, left, right, strand), p-value}

• Metadata: {expID, attribute, value}

Genomic Computing
Genomic Data Model - Samples and datasets

16

Samples and datasets
• Every sample corresponds to an «experiment», with an ID
• Every dataset is a named collection of samples with the

same region data schema
Data format independent; interoperability framework for
comparing data samples based upon their biological aspects

Genomic Computing
Genomic Data Model - Mapping examples

17

Genomic Computing
Genomic Data Model - Mapping examples

18

Genomic Computing
Genomic Data Model - Mapping examples

19

DNA-seq (mutations)
(id, ('chr,start,stop,strand), (A,G,C,T,del,ins,inserted,ambig,Max,Error,A2T,A2C,A2G,C2A,C2G,C2T))
(1, (chr1, 917179, 917180,*), (0,0,0,0,1,0,'.','.',0,0,0,0,0,0,0,0))
(1, (chr1, 917179, 917179,*), (0,0,0,0,0,1,G,'.',0,0,0,0,0,0,0,0))

RNA-seq (gene expression)
(id, ((chr,start,stop,strand), (source,type,score,frame,geneID,transcriptID,RPKM1,RPKM2,iIDR))
(1, (chr8, 101960824, 101964847,-), ('GencodeV10', 'transcript', 0.026615, NULL,
'ENSG00000164924.11', 'ENST00000418997.1', 0.209968, 0.193078, 0.058))

Annotations
(id, (chr,start,stop,strand), (proteinID,alignID,type))
(1, (chr1, 11873, 11873, +), ('uc001aaa.3', 'uc001aaa.3', 'cds'))
(1, (chr1, 11873, 12227, +), ('uc001aaa.3', 'uc001aaa.3', 'exon'))
(1, (chr1, 12612, 12721, +), ('uc001aaa.3', 'uc001aaa.3', 'exon'))
(1, (chr1, 13220, 14409, +), ('uc001aaa.3', 'uc001aaa.3', 'exon'))

ChIA-PET (denoting 3D genomic loops, head is assembled with coordinates, tail is in the schema)
(id,(chr,headstart,headstop,strand), (loopType, tailChr, tailStart, tailStop, PETcount, pValue, qValue))
(1, (chr1,7385626,7389841,*), ('Inter-Chromosome', chr17, 3081653, 3084755, 50, 0.0, 0.0)

20

Genomic Computing
Genomic Data Model - Other mapping examples

Query Language

21

(Motivational example and detailed description)

22

Genomic Computing
GMQL motivational example

The language allows for queries on the genome involving large
datasets describing:

• Genomic signals (i.e. experiment dataset regions)
• Reference regions (e.g. TSS, genes, promoters, enhancers)
• Distance rules (e.g. the nearest enhancer that stands

at least at 100 kb from the nearest gene)

Enhancer Promoter

GeneReference DNA
Experimental dataset 1

Distance pattern

Experimental dataset 2

Experimental dataset 3

Reference regions

23

Identification of distal bindings in transcription regulatory regions
Find all CTCF transcription factor (TF) binding regions of ChIP-seq data
regarding human cancer cell line HeLa-S3, which are farther than x kb
(e.g. 1000 kb) from the transcription start site (TSS) of the nearest gene.
Then, for the same cell line find all H3K4me1 histone modification (HM)
regions that are the nearest regions farther than x kb from a TSS.
Finally, consider known enhancer (EN) regions and return a list of
EN-HM-overlapping TF regions.

Genomic Computing
GMQL motivational example – Distal bindings

Nearest gene

HM

TF1

TF2

REF
x

TSS

EN

GMQL
result

HM: Histone mark
experiment

TF: Transcription factor
experiment

REF: Reference DNA regions
EN: Enhancer
x: Threshold distance

DNA region

Not respecting
the distance threshold
Not EN or HM
overlapping

24

Genomic Computing
GMQL motivational example – Distal bindings

HM = SELECT(dataType == 'ChipSeq‘ AND cell == 'HeLa-S3‘
AND antibody == ‘H3K4me1') PEAK;

TF = SELECT(dataType == 'ChipSeq‘ AND cell == 'HeLa-S3‘
AND antibody == ‘CTCF') PEAK;

TSS = SELECT(type == ‘TSS‘) ANNOTATION;
EN = SELECT(type == ‘enhancer‘) ANNOTATION;
HMa = JOIN(distance > 1000000, minDistance(5); output: right) TSS HM;
TFa = JOIN(distance > 1000000, minDistance(5); output: right) TSS TF;
HMb = JOIN(distance < 0; output: int) EN HMa;
HMc = MERGE() HMb;
TF_res = JOIN(distance < 0; output: right) HMc TFa;

Nearest gene

HM

TF1

TF2

REF
x

TSS

EN

GMQL
result

HM: Histone mark
experiment

TF: Transcription factor
experiment

REF: Reference DNA regions
EN: Enhancer
x: Threshold distance

DNA region

Not respecting
the distance threshold
Not EN or HM
overlapping

25

Genomic Computing
GenoMetric Query Language

GenoMetric Query Language (GMQL) is defined as a sequence
of algebraic operations following the structure:

< variable > = < operator > (< parameters >) < variable >
– Every variable is a dataset including many samples

– Offers high-level, declarative operations which operate both
on regions and meta-data -> thus, each operation
progressively builds the regions and meta-data of its result

– Inspired by SQL and Pig Latin

– Targeted towards cloud computing

Genomic Computing
Overall view on GMQL operations

Classic relational operations – with genomic extensions
• SELECT, PROJECT, EXTEND, ORDER, GROUP,
MERGE, UNION, DIFFERENCE

Domain-specific genomic operations:
• COVER, (GENOMETRIC) JOIN, MAP

Utilities:
• MATERIALIZE

26

27

Genomic Computing
Sample selection – Example SELECT

0.1 0.6 Tumor_type = brca
Patient_age = 75

Selection of the samples where a selection predicate p is
true (e.g. select patients younger than 70 years)

0.5 0
Tumor_type = brca
Patient_age = 63
Gender = Female

0.1 0 0.8 0.1
Tumor_type = brca
Patient_age = 58

S2 = SELECT(p) S1;

Example: S2 = SELECT(Patient_age < 70) S1;

28

Genomic Computing
Region selection – Example SELECT

0.1 0.6 Tumor_type = brca
Patient_age = 75

0.5 0
Tumor_type = brca
Patient_age = 63
Gender = Female

0.1 0 0.8 0.1 Tumor_type = brca
Patient_age = 58

Selection of the regions where a selection predicate p is
true (e.g. select those regions which have a score greater
than 0.5)

S2 = SELECT(region: p) S1;

Example: S2 = SELECT(region: score > 0.5) S1;

29

Genomic Computing
Region projection – Example PROJECT

Tumor_type = brca
Patient_age = 75

Tumor_type = brca
Patient_age = 75

Projection of the regions: for each gene in a set, take its
promoter (e.g. from -2kbp, to +1kbp from the TSS)

S2 = PROJECT(p) S1;

Example: S2 = PROJECT(region_update:
start = start – 2000, stop = start + 1000) S1;

S1

S2

30

Genomic Computing
Metadata extension – Example EXTEND

5 3102 2

5 01

Tumor_type = brca
Patient_age = 75
Region_count = 3

Tumor_type = esca
Patient_age = 78
Region_count = 5

5 3

Tumor_type = chol
Patient_age = 85
Region_count = 2

Count the regions in each sample and store it in metadata

S2 = EXTEND(p) S1;

Example: S2 = EXTEND(Region_count AS COUNT()) S1;

31

Genomic Computing
Order and select top k – Example ORDER

Tumor_type = brca
Patient_age = 75
Region_count = 3
Order = 2

Tumor_type = esca
Patient_age = 78
Region_count = 5
Order = 1

5 01

5 3102 2

5 3

Tumor_type = chol
Patient_age = 85
Region_count = 2
Order = 3

Order by region_count metadata and take the top 2 samples
S2 = ORDER(Ai; [TOP: k]) S1;

Example: S2 = ORDER(Region_count; TOP: 2) S1;

32

Genomic Computing
Group by metadata – Example GROUP

5 01

Tumor_type = brca
Patient_age = 75
Group = 1
Min = 0

5 3102 1

Tumor_type = esca
Patient_age = 78
Group = 2
Min = 1

5 3

Tumor_type = chol
Patient_age = 87
Group = 3
Min = 3

534 6

Tumor_type = esca
Patient_age = 78
Group = 2
Min = 1

Group samples according to the value of tumor and
compute the region minimum score of each group

33

Genomic Computing
Region merge – Example MERGE

Type = ChipSeq
Antibody = CTCF
Replicate = 1
Type = ChipSeq
Antibody = CTCF
Replicate = 2

Type = ChipSeq
Antibody = CTCF
Replicate = 3

Type = ChipSeq
Antibody = CTCF
Replicate = 1
Replicate = 2
Replicate = 3

Collapse a bunch of samples (both region and metadata)
into an unique one S2 = MERGE() S1;

S1.s1

S1.s2

S1.s3

S2

34

Genomic Computing
Region union – Example UNION

Tumor_type = brca
Experiment = mirna

Tumor_type = brca
Experiment = rnaseq

Return a single dataset with all the samples in two input
datasets, merging their region attributes if different

Tumor_type = brca
Experiment = mirna

Tumor_type = brca
Experiment = rnaseq

S3 = UNION() S1 S2;

S1

S2

S3

35

Genomic Computing
Region difference – Example DIFFERENCE

Return all the regions in the first dataset that do not
overlap any region in the second one

Tumor_type = brca
Experiment = mirna

Tumor_type = brca
Experiment = rnaseq

S1.Tumor_type = brca
S1.Experiment = rnaseq
S2.Tumor_type = brca
S2.Experiment = mirna

S1

S2

S3

S3 = DIFFERENCE() S1 S2;

COVER(ALL,ALL) AND COVER(2,ANY)COVER(1,ANY) OR

S2 = COVER(min, max) S1;

36

Genomic Computing
Dataset operations: COVER

• ALL: number of samples in the dataset
• Jaccard indexes can be used instead of min-max
• An aggregate function f can be computed for regions

forming the cover

• Produces new regions where there are between MIN and
MAX regions of the operand dataset

37

Tumor_type = brca
Tumor_grade = g3

Tumor_type = brca
Tumor_grade = g2

Tumor_type = brca
Tumor_grade = g2

Tumor_type = brca
Tumor_grade = g2
Tumor_grade = g3

2 2 3 1 2 1 1

COVER(2, ANY): find portions of the genome that are
covered by at least two regions

Genomic Computing
Region Cover – Example COVER

S2 = COVER(2, ANY) S1;

S1.s1

S1.s2

S1.s3

S2 23 22

• Given two sets of samples, JOIN builds the pairs of regions
and metadata where a join predicate p is true.

• Region of results are composed from regions of the operands

S3 = JOIN(p, comp-op) S1 S2;

• Functions minDistance and distance can be used in the
predicate

Genomic Computing
Dataset operations: JOIN

38

39

Genomic Computing
Metadata join – Example JOIN

Metadata join: select pairs of matching samples (e.g. with
the same “Type”)

Type = uvm
Patient = 123
Gender = M

Type = brca
Patient = 10
Age = 88

Type = brca
Patient = 211

Type = sarc
Patient = 12

Type = sarc
Patient = 444
Age = 88

Type = brca
Patient = 333
Grade = g3

Type = sarc
Patient = 12

40

Join at min-distance: associate each region in the former
dataset with the closest in the latter

Genomic Computing
Region Join – Example JOIN

A B feature = transcripts

2 feature = TFBSs

S1.feature = transcripts
S2.feature = TFBSs

S3 = JOIN(MINDISTANCE(1); output: RIGHT) S1 S2;

1-A 3-B

1 3

S1

S2

S3

S2 = JOIN(DISTANCE < 1000; output: CAT) R, S1;

d = 400

d = 2500 d = 1100

d = 0

Matching pairs
and region

composition

R

3 5

e1

3 5 e2

All pairs

41

Genomic Computing
Dataset operations: JOIN example

53

R

e1

S2 = MAP(newAttr AS MIN(attr)) R S1;

2 1 3

2 1 43 2

1

2 1

S1

R

S2

42

Genomic Computing
Dataset operations: MAP

• Computes aggregate functions over samples of S1 which
intersect with the regions of R

0

43

Compute an aggregate function (e.g. AVERAGE) on all the
regions intersecting the reference

Genomic Computing
Region Map – Example MAP

annotation = genes
provider = RefSeqA B

feature = SNP

2 4

R.annotation = genes
R.provider = RefSeq
S1.features = SNP

S2 = MAP(average_score AS AVG(score)) R S1;

R

S1

S2

S2 = MAP() R S1;
COUNT is computed by default

44

Genomic Computing
MAP opens to Genome Space abstraction

• MAP operations, through reference regions R, extract and
standardize genomic features expressed in distinct datasets

• Genome Space: simplified structured outcome, ideal format
for data analysis

 R1 R2 R3
DHS

RNAPII

H3K4me1

…

Gene A
TSS

Enhancer E

GMQL
MAP

45

Genomic Computing
Next: MAP – Genometric space abstraction

• Genometric spaces represent adjacency matrices, i.e.
networks

– Network analysis methods (e.g. page rank, hub/authority,
community detection, …)

 R1 R2 R3
DHS

RNAPII

H3K4me1

…

Gene A
TSS

Enhancer E

GMQL
MAP

48

Genomic Computing
MAP result visualization: Genome Browser

Res = MAP(count_name: mutCount) Genes Dataset;

Dataset

Genes

Res

49

Genomic Computing
MAP result visualization: Heatmap viewer

It requires:
• Partitioning by experiment classes
• Adding names to regions and to experiments (from metadata)
• Adding colors

50

Genomic Computing
Data Viewer: Region clustering

Cluster3
(low density
pattern-2)

Cluster2
(low density
pattern-1)

Cluster1
(high density)

Cluster4
(basal)

51

Genomic Computing
Data Viewer: MAP result visualization

GenoMetric Space Explorer: http://www.bioinformatics.deib.polimi.it/GeMSE/

52

Genomic Computing
Data Viewer: Dendrogram

Cut-1:
2 clusters

Cut-2:
4 clusters

Distance

53

Genomic Computing
Data Viewer: Pattern extraction on samples

54

Genomic Computing
Data Viewer: Metadata aggregation

For biological/clinical interpretation of genomic data processing,
and data stratification based on of biological/clinical metadata
values and/or patterns of different genomic feature regions

Implementation
(Ver. 1 & Ver. 2)

64

65

Genomic Computing
GMQL implementation, Ver. 1

• GMQL similar to Pig Latin (by Yahoo! Research)
– Algebraic language for data-intensive applications on

Apache Hadoop, a framework for parallel computing which
executes Google MapReduce programs

• Implementation strategy: develop a translator to Pig Latin
– Easier development and maintenance
– Big company involvement ensures development
– Use cloud computing power to obtain efficiency and

scalability

Genomic Computing
System architecture

66

Genomic Computing
System architecture

67

Genomic Computing
System architecture - Repository

68

Genomic Computing
GMQL query translation to PIG over Hadoop

69

GMQL query Translator Pig over
Hadoop

Motivation:
• Clear & compact user code
• User-transparent optimization

Genomic Computing
Translation example

70

• 1 statement => 25 Pig Latin lines
of code + auxiliary Java function

• The translator takes also care of
updating the variable schema

• Error handling

71

Genomic Computing
GMQL to Pig Latin translation

•

Genomic Computing
Optimization in translation

1. Parallelism by splitting computations:
• By chromosome
• By experiment

2. Join and Map have a translation which avoids cross
products, based on sequential scan of regions

Pig Latin shows its ability to scale on hundreds or
thousands of experiments and multi-node systems

72

Genomic Computing
MAP and JOIN vs. competitors

73

Genomic Computing
System architecture, Ver. 2

• Holistic data management system for genomics
• Uses cloud-based computing for querying thousands of

heterogeneous datasets

74

75

Genomic Computing
GMQL implementation, Ver. 2

• A different approach, with language-independent
intermediate representation

• Targeting also usability from within R and Galaxy

IR Semantics

GMQL Embedded
GMQL

Logical
GMQL

Spark Flink ???

Syntax

Implementation API to IR

Genomic Computing
GMQL implementation, Ver. 2 - Scala API

76

Genomic Computing
GMQL implementation, Ver. 2 - IR
Example

77

78

Genomic Computing
GMQL implementation, Ver. 2

• New optimization options

GMQLGMQL IR Optimized
IR Implementation

Query
Optimizer

Low Level
Optimizer

1) Node reordering / deletion
2) Select condition refinement

1) Alternative algorithms
2) Parallelism tuning
3) Data partitioning
4) Caching

Genomic Computing
Optimizations at compile-time & execution-time

Idea:
• Let Flink/Spark/… engines implement common and

well known optimization
• Exploit the intermediate representation in order to

implement optimizations which are driven by the
semantics of GMQL

• Meta-first optimization
• Operator swapping optimization

• Other optimizations based on algorithms for parallel
execution on the cloud

79

Genomic Computing
Meta-first optimization

Under certain conditions (meta-separability), it is
possible to compute the metadata side of the query
strictly before the region data side.

80

Genomic Computing
Meta-separability

GMQL queries are
always meta-separable,
except for the ones
which use the EXTEND
operator

(EXTEND operator
computes and
aggregates on the region
data and stores the
result in the metadata)

81

Genomic Computing
Meta-first optimization - Workflow

ReadMD

StoreMD

ReadRD

StoreRD

ID
s

• Compute metadata side
of the query

• Retrieve the IDs from the
metadata result

• Use the IDs to
selectively load only the
files that will appear in
the output

82

Genomic Computing
Where it helps?

Affected queries are the ones which contain one or
more metadata selection (far from the Readings),
metadata join and metadata group by; those operations
cut the size of the output

83

Genomic Computing
Operator swapping optimization

Some reordering of the execution plan can not be inferred
by lower level optimizer, since they are motivated by
GMQL semantics

DS1 DS2 DS3

Join
left

Diff

DS1 DS3 DS2

Join
left

Diff

84

Genomic Computing
Binning strategy optimization

Bin1 Bin2 Bin3 Bin4 Bin5 Bin6 Bin75
bin
6

n7

Strategy for intersection:
1. Partition the genome in bins
2. Assign each region to all the bins it overlaps
3. Search for intersections within each bin

In the case of more complex operations, we change the
way in which the regions are assigned to the bins

85

In order to avoid the duplicates production, when two
regions overlap, an output is emitted if, and only if, at least
one of them begins in the considered bin

• Bin 2: overlap => red region begins => Output e
• Bin 3: overlap => no region begins => Output not emitted!

Genomic Computing
Binning strategy

Avoiding output duplicates:

bin 1 bin 2 bin 3

86

Genomic Computing
Binning tradeoff

• Smaller bins: smaller search space, but higher number of
replicates

• Optimal binning size depends on:
– Number of regions and local density
– Region length distribution
– GMQL operation and parameters
– System settings (e.g., number of nodes, amount of

memory, …)

0
50

100
150
200
250
300

1K 5K 10K 50K 100K 200K 500K 1M 10M

Bin length

Ex
ec

. t
im

e

87

Repository

89

Genomic Computing
Repository pipeline

90

Stores experimental datasets and annotations collected from
external databases

• ENCODE (more than 4000 processed datasets for humans
and mices, relevant to epigenomic research)

• Roadmap Epigenomics (about 1000 human epigenomic
datasets for stem cells and ex-vivo tissues)

• TCGA (The Cancer Genome Atlas, providing more than
50,000 processed datasets for more than 30 cancer types,
including mutations, copy number variations, gene and
miRNA expressions, methylations)

Genomic Computing
Repository – Experimental data

91

Annotation data are also extracted from external references,
based upon the needs of given research projects

• Genes (UCSC, RefSeq, Ensembl, GENCODE)
• Transcription Start Sites (SwitchGear)
• Transcription Factor Binding Sites (UCSC, ENCODE)
• CpG islands (UCSC)
• miRNA target sites (UCSC)
• Enhancers (Vista)

Genomic Computing
Repository - Annotations

92

Genomic Computing
Repository content

93

User Interface

94

http://www.GMQL.eu/

Genomic Computing
GMQL Web interface (http://www.GMQL.eu/)

95

97

Genomic Computing
GMQL results on Integrated Genome Browser

Genomic Computing
GMQL examples – Distal bindings: Visualization of results

98

Results are provided to user in GTF or Tab-delimited format

Genomic Computing
GMQL examples – Distal bindings: Visualization of results

99

Genomic Computing
PyGMQL within Jupyter Notebooks & RGMQL

100

Integrated environments
where the bioinformatician
can:
• Run GMQL queries on

local or remote data
• Integrate the results with

external libraries of
Python or R/Bioconductor

• Visualize the results

https://pygmql.readthedocs.io/en/latest/
https://bioconductor.org/packages/release/bioc/html/RGMQL.html

Genomic Computing
GMQL workspace in FireCloud at Broad Institute

101

https://pygmql.readthedocs.io/en/latest/
https://bioconductor.org/packages/release/bioc/html/RGMQL.html

Applications

102

Genomic Computing
Transcription Factor query & Genome Space

Source: ENCODE ChIP-seq datasets for transcription factors (TF)
Goal: Generation of a transcriptional network from ChIP-seq data
Method: Select TFs and genes, and derive TFs-Genes links. Build a
TFxGenes matrix Mij such that Mij = number of binding sites of TF i in the gene
region j, Mij = 0 if no binding.

Extract gene information, some of them tagged with TF-encoding

GENE_ANN = SELECT(type == 'gene' AND provider == 'RefSeq')
ANNOTATION;

GENES = SELECT(region: feature == ’gene’) GENE_ANN;

TF_GENES = SELECT(region: encode_TF == ‘yes’) GENES; # red in
next slide

Collect TF samples (122)

TF = SELECT(dataType = 'ChipSeq' AND subType = 'TF' AND

cell == 'k562' AND treatement == 'None') ENCODE_PEAK;
Build TF Genomic Space

GS_TF = MAP(count_name: binding_num) GENES TF;

103

104

Genomic Computing
Genome Space building

G1 G2 G4

TF1
TF2
TF4

Ann

Cell line: K562
(CML)
TFs: 122
Nodes: 6240
Edges: 30587

TF2

TF1 G1

G2

TF4
G4

G3=TF3

G3=TF3

105

Genomic Computing
Restriction of TF to open chromatin regions

Collect open chromatin samples

DHS_2 = SELECT(dataType == 'DnaseSeq' AND
cell == 'k562') ENCODE_PEAK; # 2 samples

FAIRE = SELECT(dataType == 'FaireSeq' AND
cell == 'k562') ENCODE_PEAK; # 1 sample

Merge DHS replicates in one sample

DHS = FLAT(2, ANY; aggregate: pValue AS MIN(pValue))
DHS_2;

Merge open chromatin regions from DHS and FAIRE assays

DHS_FAIRE = UNION() DHS FAIRE;
OPEN = COVER(1, ANY; aggregate: pValue AS MIN(pValue))

DHS_FAIRE;
Extract TFs in open chromatin regions only (active DNA
binding)

TF_OPEN = JOIN(distance < 0; output: left) TF OPEN;

106

Genomic Computing
Transcription Factor Genome Space

TF Genomic Space

GS_TF_0 = MAP(count_name: binding_num) GENES TF_OPEN;

GS_TF = SELECT(binding_num > 0) GS_TF_0;

G1 G2 G3
TF3

G4 G5 … Gn

TF1 1 0 1 1 0 … 1

TF2 1 0 1 0 0 … 1

TF3 0 0 0 0 1 … 0

… 0 0 0 1 0 … 1

TFn 0 0 0 1 1 … 1

107

Genomic Computing
Genome Space building

G1 G2 G4Ann

TF1

TF2

TF4

DHS

FAIRE

TF2

TF1

TF4

G4

G2 Cell line: K562
(CML)
TFs: 95
Nodes: 1717
Edges: 2367

G3=TF3

G3=TF3

G1

From Genometric Space to networks:
K562 transcription network

108

Summary & Outlook

115

116

Genomic Computing
Conclusions

• GDM: a data format-independent genomic data model
– For genomic region data and related metadata
– Easing integration and processing of heterogeneous

genomic data

• GMQL: a high-level declarative language
– Easing the expression of even complex queries on

numerous data of multiple different types
– Running also on cloud computing environments
– Supporting a first processing also of big data, to extract

the relevant (usually smaller) ones for further processing

• Several GDM & GMQL application examples
– Characterizing interplay and function of genomic regions

118

A
 p

at
te

rn
 o

f
ge

no
m

ic
 fe

at
ur

es
Genomic Computing Future
Vision: Pattern-based queries from genome browser

119

Genomic Computing Future
Vision: Cycle Query–Analysis–Visualization

• Query
– By example
– Using public DBs & ontologies
– Search remote data
– Query / extract remote data

• Analysis
– (un)supervised learning
– Region finding
– Motif / pattern finding

• Visualization
– Clustering
– Long range interactions

Visualization

Query

Analysis

Genomic Computing Future
Long-term vision: Internet of Genomes

• The platform (client & servers) and language should
support queries/computations involving different servers
- Minimizing the information to be transferred among

servers and between them and the client
• Each server should expose its own data for access by

exploratory search & crawlers

120

Genomic Computing
Resources & Web sites

Overview: http://www.bioinformatics.deib.polimi.it/genomic_computing/
GMQL web site: http://www.bioinformatics.deib.polimi.it/GMQLsystem/

Includes:
• Download open source code & documentation

– GMQL System code & APIs - wiki
– GMQL Web interface code - wiki & user manual
– GMQL Package and Quick Start installation
– GMQL Docker deploy
– GMQL workspace in the Broad Institute FireCloud platform
– PyGMQL Python library code & documentation
– RGMQL R/Bioconductor package code

• Web and REST interfaces: http://www.gmql.eu/
– User-friendly interface to creating/managing GMQL queries
– Repository of ENCODE / Roadmap Epigenomics / TCGA datasets

121

Genomic Computing
Acknowledgements

European Research Council “Data-Driven Genomic Computing”
(GeCo) project: http://www.bioinformatics.deib.polimi.it/GeCo/

122

Thank you for your attention!

Any question?

Thank you for your attention!

Genomic Computing

123

http://www.bioinformatics.deib.polimi.it/genomic_computing/

	Slide Number 1
	Genomic Computing �Background: Next Generation Sequencing
	Genomic Computing �Big data analysis with Next Generation Sequencing
	Slide Number 4
	Slide Number 5
	Genomic Computing �The challenge: Understanding biologists’ needs
	Genomic Computing �Challenge: Genotype–phenotype discovery
	Genomic Computing �Main questions
	Genomic Computing �Research agenda
	Genomic Computing �Research agenda by topics
	Genomic Data Model
	Genomic Computing �Genomic Data Model
	Genomic Computing �Model rationale
	Genomic Computing �Genomic Data Model – Example
	Genomic Computing �Genomic Data Model – Example
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Query Language
	Genomic Computing �GMQL motivational example
	Genomic Computing �GMQL motivational example – Distal bindings
	Genomic Computing �GMQL motivational example – Distal bindings
	Genomic Computing �GenoMetric Query Language
	Genomic Computing �Overall view on GMQL operations
	Genomic Computing �Sample selection – Example SELECT
	Genomic Computing �Region selection – Example SELECT
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Genomic Computing �Dataset operations: JOIN example
	Slide Number 42
	Slide Number 43
	Genomic Computing �MAP opens to Genome Space abstraction
	Genomic Computing �Next: MAP – Genometric space abstraction
	Slide Number 48
	Slide Number 49
	Genomic Computing �Data Viewer: Region clustering
	Genomic Computing � Data Viewer: MAP result visualization
	Genomic Computing �Data Viewer: Dendrogram
	Genomic Computing �Data Viewer: Pattern extraction on samples
	Genomic Computing �Data Viewer: Metadata aggregation
	Implementation
	Genomic Computing �GMQL implementation, Ver. 1
	Genomic Computing �System architecture
	Genomic Computing �System architecture
	Genomic Computing �System architecture - Repository
	Genomic Computing�GMQL query translation to PIG over Hadoop
	Genomic Computing�Translation example
	Genomic Computing �GMQL to Pig Latin translation
	Genomic Computing �Optimization in translation
	Genomic Computing �MAP and JOIN vs. competitors
	Genomic Computing �System architecture, Ver. 2
	Genomic Computing �GMQL implementation, Ver. 2
	Genomic Computing �GMQL implementation, Ver. 2 - Scala API
	Genomic Computing �GMQL implementation, Ver. 2 - IR Example
	Genomic Computing �GMQL implementation, Ver. 2
	Genomic Computing �Optimizations at compile-time & execution-time
	Genomic Computing �Meta-first optimization
	Genomic Computing �Meta-separability
	Genomic Computing �Meta-first optimization - Workflow
	Genomic Computing �Where it helps?
	Genomic Computing �Operator swapping optimization
	Genomic Computing �Binning strategy optimization
	Genomic Computing �Binning strategy
	Genomic Computing �Binning tradeoff
	Repository
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Genomic Computing �Repository content
	User Interface
	Genomic Computing �GMQL Web interface (http://www.GMQL.eu/)�
	Slide Number 97
	Genomic Computing �GMQL examples – Distal bindings: Visualization of results
	Genomic Computing �GMQL examples – Distal bindings: Visualization of results
	Genomic Computing �PyGMQL within Jupyter Notebooks & RGMQL�
	Genomic Computing �GMQL workspace in FireCloud at Broad Institute�
	Applications
	Genomic Computing �Transcription Factor query & Genome Space
	Genomic Computing �Genome Space building
	Genomic Computing �Restriction of TF to open chromatin regions
	Genomic Computing �Transcription Factor Genome Space
	Genomic Computing �Genome Space building
	From Genometric Space to networks: �K562 transcription network
	Summary & Outlook
	Genomic Computing �Conclusions
	Slide Number 118
	Genomic Computing Future �Vision: Cycle Query–Analysis–Visualization
	Genomic Computing Future �Long-term vision: Internet of Genomes
	Genomic Computing �Resources & Web sites
	Genomic Computing �Acknowledgements
	Thank you for your attention! �

